[1] |
向宇彤. 极端气候下重庆市农业保险发展研究[D]. 太原: 山西财经大学, 2023.
|
[2] |
周波涛, 钱进. IPCC AR6报告解读:极端天气气候事件变化[J]. 气候变化研究进展, 2021, 17(6):713-718.
|
[3] |
《中国水旱灾害防御公报2021》概要[J]. 中国防汛抗旱, 2022, 32(9):38-45.
|
[4] |
佟欣羽. 极端气候事件对东北三省植被净初级生产力的影响研究[D]. 大连: 辽宁师范大学, 2023.
|
[5] |
舒章康, 李文鑫, 张建云, 等. 中国极端降水和高温历史变化及未来趋势[J]. 中国工程科学, 2022, 24(5):116-125.
|
[6] |
夏石头, 彭克勤, 曾可. 水稻涝害生理及其与水稻生产的关系[J]. 植物生理学通讯, 2000, 36(6):581-588.
|
[7] |
陈永华, 严钦泉, 肖国樱. 水稻耐淹涝的研究进展[J]. 中国农学通报, 2005, 21(12):151-153.
|
[8] |
王琛. 分蘖期淹涝胁迫对水稻形态、生理、产量和米质影响的研究[D]. 扬州: 扬州大学, 2020.
|
[9] |
陆魁东, 宁金花, 解娜, 等. 淹涝胁迫对水稻形态的影响[J]. 湖南农业大学学报(自然科学版), 2015, 41(1):18-23.
|
[10] |
成威威. 雨水深蓄对水稻生长及稻田减排效果影响研究[D]. 扬州: 扬州大学, 2019.
|
[11] |
张艳贵, 宁金花, 谢娜, 等. 分蘖期淹涝胁迫对水稻形态及产量的影响[J]. 湖南农业科学, 2014(7):14-17.
|
[12] |
张文. 水稻产量和稻米品质对分蘖期淹水胁迫的响应研究[D]. 扬州: 扬州大学, 2023.
|
[13] |
王振省. 分蘖期淹涝胁迫对水稻生长的影响及其应用研究[D]. 扬州: 扬州大学, 2016.
|
[14] |
李学昊, 罗强, 秦婷婷, 等. 暴雨后不同滞蓄水深对虾稻田中水稻拔节期生长及产量的影响[J]. 中国农村水利水电, 2021(9):124-127.
|
[15] |
徐振然. 涝害对水稻碳氮代谢的影响及其生理机理[D]. 扬州: 扬州大学, 2023.
|
[16] |
任桢. 不同生育时期淹涝胁迫对水稻生长、产量与品质的影响及其生理机理研究[D]. 扬州: 扬州大学, 2023.
|
[17] |
唐韵, 胡大先. 洪涝灾区水稻病害研究[J]. 植物医生, 1995(2):36-38.
|
[18] |
李堂平. 洪涝淹水条件下杂交稻制种节瘟的发生与防治[J]. 湖南农业科学, 2002(6):46-47.
|
[19] |
王海霞. 洪涝灾后水稻病虫草害的发生特点及原因[J]. 安徽农学通报(下半月刊), 2011, 17(14):118-119.
|
[20] |
FLEXAS J. Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C-3 plants: Why so much little success?[J]. Plant Science: An International Journal of Experimental Plant Biology, 2016, 251: 155-161.
|
[21] |
JERONI G, HIP LITO M, FLEXAS J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms[J]. New Phytologist, 2007, 175(1): 81-93.
|
[22] |
DONG L, LIU X, LIU L M, et al. Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice[J]. Plant Cell & Environment, 2015, 38(12): 2 541-2 550.
|
[23] |
XIONG D L, FLEXAS J. Leaf economics spectrum in rice: Leaf anatomical, biochemical, and physiological trait trade-offs[J]. Journal of Experimental Botany, 2018, 69(22): 5 599-5 609.
|
[24] |
PALADA M C, VERGARA B S. Environmental effects on the resistance of rice seedlings to complete submergence[J]. Crop Science, 1972, 12(2): 209-212.
|
[25] |
ZHOU W G, CHEN F, MENG Y J, et al. Plant waterlogging/flooding stress responses: From seed germination to maturation[J]. Plant Physiology and Biochemistry, 2020, 148: 228-236.
|
[26] |
魏和平, 利容千. 淹水对玉米不定根形态结构和ATP酶活性的影响[J]. 植物生态学报, 2000, 24(3):293-297.
|
[27] |
SCHMIDT R R, WEITS D A, FEULNER C F J, et al. Oxygen sensing and integrative stress signaling in plants[J]. Plant Physiology, 2018, 176: 1 131-1 142.
|
[28] |
孙小艳, 陈铭, 李彦强, 等. 淹水胁迫下北美鹅掌楸无性系生理生化响应差异[J]. 植物生理学报, 2018, 54(3):473-482.
|
[29] |
TSUJI H, MEGURO N, SUZUKI Y, et al. Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during reaeration in rice[J]. FEBS Letters, 2003, 546(2/3): 369-373.
|
[30] |
KU H S, SUGE H, RAPPAPORT L, et al. Stimulation of rice coleoptile growth by ethylene[J]. Planta, 1970, 90(4): 333-339.
|
[31] |
SUGE H. Synergistic action of ethylene with gibberellins in the growth of rice seedlings[J]. Japanese Journal of Crop Science, 1974, 43(1): 83-87.
|
[32] |
ISHIZAWA K, ESASHI Y. Action mechanism of ethylene in the control of sugar translocation in relation to rice coleoptile growth I. sucrose metabolism[J]. Plant and cell physiology, 1988, 29(1): 131-141.
|
[33] |
HATTORI Y, NAGAI K, FURUKAWA S, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature, 2009, 460(7258): 1 026-1 030.
|