中国稻米 ›› 2024, Vol. 30 ›› Issue (3): 10-17.DOI: 10.3969/j.issn.1006-8082.2024.03.002
吴梦寅1,2(), 蔡炜1,2, 钟笑涵1,2, 杨建昌1,2, 刘立军1,2, 张伟杨1,2,*()
收稿日期:
2023-11-29
出版日期:
2024-05-20
发布日期:
2024-05-20
通讯作者:
* wyz@yzu.edu.cn
作者简介:
第一作者:win19022022@163.com
基金资助:
WU Menyin1,2(), CAI Wei1,2, ZHONG Xiaohan1,2, YANG Jianchang1,2, LIU Lijun1,2, ZHANG Weiyang1,2,*()
Received:
2023-11-29
Online:
2024-05-20
Published:
2024-05-20
Contact:
* wyz@yzu.edu.cn
About author:
1st author: win19022022@163.com
摘要:
高温胁迫是影响水稻产量和品质形成的主要环境因素之一。本文概述了高温胁迫对水稻籽粒灌浆和稻米品质形成的影响,并从同化物的积累与转运、碳氮代谢关键酶活性、内源激素以及分子机理等方面综述了其生物学机制;讨论了减轻水稻高温危害的关键技术措施和水稻响应高温胁迫机制的重点研究方向,为水稻抗高温育种和栽培提供一定的理论依据。
中图分类号:
吴梦寅, 蔡炜, 钟笑涵, 杨建昌, 刘立军, 张伟杨. 高温胁迫对水稻籽粒灌浆与稻米品质影响及其机理研究进展[J]. 中国稻米, 2024, 30(3): 10-17.
WU Menyin, CAI Wei, ZHONG Xiaohan, YANG Jianchang, LIU Lijun, ZHANG Weiyang. Research Advances in High Temperature Stress on the Grain-filling and Quality of Rice and Its Mechanism[J]. China Rice, 2024, 30(3): 10-17.
[1] | TRICKER P J, ABDELJALIL E H, JESSICA S, et al. The physiological and genetic basis of combined drought and heat tolerance in wheat[J]. Journal of Experimental Botany, 2018, 69(13): 3 195-3 210. |
[2] | SU Q, ROHILA J S, RANGANATHAN S, et al. Rice yield and quality in response to daytime and nighttime temperature increase - A meta-analysis perspective[J]. The Science of the Total Environment, 2023, 1(6): 52-56. |
[3] | KUMAR N, KUMAR N, SHUKLA A, et al. Impact of terminal heat stress on pollen viability and yield attributes of rice (Oryza sativa L.)[J]. Cereal Research Communications, 2015, 43(4): 1-11. |
[4] | SONG X, DU Y, ZHAO Q, et al. Effects of high night temperature during grain filling on formation of physicochemical properties for japonica rice[J]. Journal of Cereal Science, 2015, 66: 74-80. |
[5] | ISHIMARU T, HORIGANE AK, IDA M. Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress[J]. Journal of Cereal Science, 2009, 166-174. |
[6] | LIN G, YANG Y, CHEN X, et al. Effects of high temperature during two growth stages on caryopsis development and physicochemical properties of starch in rice[J]. International Journal of Biological Macromolecules, 2020, 145: 301-310. |
[7] | SOMAYANDA I M, BHEEMANAHALLI R, HEIN N T, et al. High night temperature effects on wheat and rice: Current status and way forward[J]. Plant Cell and Environment, 2021, 44: 2 049-2 065. |
[8] | 杨建昌. 水稻弱势粒灌浆机理与调控途径[J]. 作物学报, 2010, 36(12):2 011-2 019. |
[9] | MIYAZAKI A, IKEDA A, YONEMARU J, et al. Relationships among the chalkiness, kernel size and endosperm cell morphology of rice kernels at different spikelet positions within a panicle[J]. Plant Production Science, 2018, 21(3): 225-232. |
[10] | 沈泓, 姚栋萍, 吴俊, 等. 灌浆期不同时段高温对稻米淀粉理化特性的影响[J]. 中国水稻科学, 2022, 36(4):377-387. |
[11] | 王军可, 王亚梁, 陈惠哲, 等. 灌浆初期高温影响水稻籽粒碳氮代谢的机理[J]. 中国农业气象, 2020, 41(12):774-784. |
[12] | KUMAR R, MUKHERJEE S, AYELE B T. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: a comprehensive review[J]. Biotechnology Advances, 2018, 36(4): 954-967. |
[13] | ZHAO D, ZHANG C, LI Q, et al. Genetic control of grain appearance quality in rice[J]. Biotechnology Advances, 2022, 60: 108 014. |
[14] | DOU Z, TANG S, CHEN W, et al. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta[J]. Journal of Cereal Science, 2018, 81: 118-126. |
[15] | SIDDIK M A, ZHANG J, CHEN J, et al. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period[J]. European Journal of Agronomy, 2019, 106: 30-38. |
[16] | PARK J R, KIM E G, JANG Y H, et al. Screening and identification of genes affecting grain quality and spikelet fertility during high-temperature treatment in grain filling stage of rice[J]. BMC Plant Biology, 2021, 21(1): 263. |
[17] | FAN X L, LI Y Q, LU Y, et al. The interaction between amylose and amylopectin synthesis in rice endosperm grown at high temperature[J]. Food Chemistry, 2019, 301: 125 258. |
[18] | TATEYAMA M, SAKAI M, SUTO M. Varietal differences in the response of the amylose content of the endosperm of low-amylose rice (Oryza sativa L.) lines to temperature during the ripening period[J]. Breeding Research, 2005, 7(1): 1-7. |
[19] | ISHIMARU T, PARWEEN S, SAITO Y, et al. Laser microdissection-based tissue-specific transcriptome analysis reveals a novel regulatory network of genes involved in heat-induced grain chalk in rice endosperm[J]. Plant Cell Physiology, 2019, 60(3): 626-642. |
[20] | UMEMOTO T, TERASHIMA K. Research note: Activity of granule-bound starch synthase is an important determinant of amylose content in rice endosperm[J]. Functional Plant Biology, 2002, 29: 1 121-1 124. |
[21] | 韩展誉, 管弦悦, 赵倩, 等. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响[J]. 作物学报, 2020, 46(7):1 087-1 098. |
[22] | 曹云英, 段骅, 杨立年. 抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因[J]. 作物学报, 2009, 35(3):512-521. |
[23] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5):1 037-1 050. |
[24] | HUANG M, ZHANG H, ZHAO C, et al. Amino acid content in rice grains is affected by high temperature during the early grain-filling period[J]. Scientific Reports, 2019, 9: 2 700. |
[25] | 段骅, 杨建昌. 高温对水稻的影响及其机制的研究进展[J]. 中国水稻科学, 2012, 26(4):393-400. |
[26] | 习敏, 许有尊, 孙雪原, 等. 氮素穗肥对水稻垩白籽粒灌浆影响及与加工品质的关系[J]. 中国农业科技导报, 2021, 23(9):144-151. |
[27] | SHIMOYANAGI R, ABO M, SHIOTSU F. Higher temperatures during grain filling affect grain chalkiness and rice nutrient contents[J]. Agronomy, 2021, 11(7): 1 360. |
[28] | LI G, ZHANG C, ZHANG G, et al. Abscisic acid negatively modulates heat tolerance in rolled leaf rice by increasing leaf temperature and regulating energy homeostasis[J]. Rice, 2020, 18 (13): 379-381. |
[29] | CHEN J H, CHEN S T, HE N Y, et al. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield[J]. Nature Plants, 2020, 6(5): 570-580. |
[30] | QU Y, SAKODA K, FUKAYAMA H, et al. Overexpression of both Rubisco and Rubisco activase rescues rice photosynthesis and biomass under heat stress[J]. Plant Cell and Environment, 2021, 4(7): 2 308-2 320. |
[31] | TEIXEIRA W F, FAGAN E B, SOARES LH, et al. Seed and foliar application of amino acids improve variables of nitrogen metabolism and productivity in soybean crop[J]. Frontiers in Plant Science, 2018, 9: 396. |
[32] | 缪乃耀, 唐设, 陈文珠, 等. 氮素粒肥缓解水稻灌浆期高温胁迫的生理机制研究[J]. 南京农业大学学报, 2017, 40(1):1-10. |
[33] | 黄小平, 张宏玉, 雷刚, 等. 灌浆期夜间高温胁迫下耐热和热敏感水稻籽粒的比较蛋白质组分析[J]. 中国水稻科学, 2017, 31(1):13-22. |
[34] | 程方民, 钟连进, 孙宗修. 灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响[J]. 中国农业科学, 2003, 36(5):492-501. |
[35] | ZHANG C X, FENG B H, CHEN T T, et al. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation[J]. Environmental and Experimental Botany, 2018, 155: 718-733. |
[36] | 孙涛, 同拉嘎, 赵书宇, 等. 氮肥对水稻胚乳淀粉品质、相关酶活性及基因表达量的影响[J]. 中国水稻科学, 2018, 32(5):475-484. |
[37] | 成臣, 曾勇军, 程慧煌, 等. 齐穗至乳熟期不同温度对水稻南粳9108籽粒激素含量、淀粉积累及其合成关键酶活性的影响[J]. 中国水稻科学, 2019, 33(1):57-67. |
[38] | YAMAKAWA H, HIROSE T, KURODA M, et al. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray[J]. Plant Physiology, 2007, 144(1): 258-277. |
[39] | ZHAO Q, YE Y, HAN Z Y, et al. SSIIIa-RNAi suppression associated changes in rice grain quality and starch biosynthesis metabolism in response to high temperature[J]. Plant Science, 2020, 294: 110 443. |
[40] | MASARU N, YOSUKE F, TOMOMI M, et al. High temperature-induced expression of rice α-amylases in developing endosperm produces chalky grains[J]. Frontiers in Plant Science, 2017, 8: 2 089. |
[41] | 韩展誉, 吴春艳, 许艳秋, 等. 不同施氮水平下灌浆期高温对水稻贮藏蛋白积累及其合成代谢影响[J]. 中国农业科学, 2021, 54(7):1 439-1 454. |
[42] | MAESTRI E, KLUEVA N, PERROTTA C, et al. Molecular genetics of heat tolerance and heat shock proteins in cereals[J]. Plant Molecular Biology, 2002, 48(5): 667-681. |
[43] | 杜红阳, 常云霞, 刘怀攀. 多胺的作用机理研究进展[J]. 周口师范学院学报, 2010, 27(5):88-91. |
[44] | 王静超, 王志琴. 多胺在水稻产量形成与响应逆境中的作用[J]. 安徽农业科学, 2012, 40(8):4 473-4 477. |
[45] | 段骅. 抽穗灌浆期高温对水稻品质和内源激素的影响[D]. 扬州: 扬州大学, 2010. |
[46] | CHEN T T, XU Y J, WANG J C, et al. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling[J]. Journal of Experimental Botany, 2013, 64(8): 2 523-2 538. |
[47] | 欧阳家俊, 宋春竹, 陈东红, 等. 植物多胺抗热机制及多胺转运蛋白的研究进展[J]. 分子植物育种, 2017, 15(8):3 286-3 294. |
[48] | IGARASHI K, KASHIWAGI K. Modulation of cellular function by polyamines[J]. The International Journal of Biochemistry & Cell Biology, 2010, 42 (1): 39-51. |
[49] | LIU X L, ZHANG H, JIN Y Y, et al. Abscisic acid primes rice seedlings for enhanced tolerance to alkaline stress by upregulating antioxidant defense and stress tolerance-related genes[J]. Plant and Soil, 2019, 438: 39-55. |
[50] | 王丰, 程方民, 刘奕, 等. 不同温度下灌浆期水稻籽粒内源激素含量的动态变化[J]. 作物学报, 2006, 32 (1):25-29. |
[51] | DU Y L, LONG C Z, DENG X Y, et al. Physiological basis of high nighttime temperature-induced chalkiness formation during early grain-filling stage in rice (Oryza sativa L.)[J]. Agronomy, 2023, 13: 4 395. |
[52] | WANG Z Q, XU Y J, CHEN T T, et al. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling[J]. Planta, 2015, 241: 1 091-1 107. |
[53] | WU Y S, YANG C Y. Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress[J]. Botanical Studies, 2019, 60(1): 23. |
[54] | SEKHAR S, PANDA B B, MOHAPATRA T, et al. Spikelet-specific variation in ethylene production and constitutive expression of ethylene receptors and signal transducers during grain filling of compact- and lax-panicle rice (Oryza sativa) cultivars[J]. Journal of Plant Physiology, 2015, 179: 21-34. |
[55] | GAUTAM H, FATMA M, SEHAR Z, et al. Exogenously-sourced ethylene positively modulates photosynthesis, carbohydrate metabolism, and antioxidant defense to enhance heat tolerance in rice[J]. International Journal of Molecular Sciences, 2022, 23(3): 1 031. |
[56] | ZHANG H, TAN G L, WANG Z Q, et al. Ethylene and ACC levels in developing grains are related to the poor appearance and milling quality of rice[J]. Plant Growth Regulation, 2009, 58(1): 85-96. |
[57] | YANG J C, CHANG E H, TANG C, et al. Relationships of ethylene evolution rate and 1-aminocylopropane -1-carboxylic acid concentration in grains during filling period with appearance quality of rice[J]. Rice Science, 2007, 14(1): 33-41. |
[58] | XU Y J, JIAN C Q, LI K, et al. High ethylene level impedes amino acid biosynthesis in rice grains[J]. Plant Growth Regulation, 2021, 96(1): 51-65. |
[59] | LV X K, HAN J, LIAO Y C, et al. Effect of phosphorus and potassium foliage application post-anthesis on grain filling and hormonal changes of wheat[J]. Field Crops Research, 2017, 214: 83-93. |
[60] | 杨建昌, 张建华. 促进稻麦同化物转运和籽粒灌浆的途径与机制[J]. 科学通报, 2018, 63(suppl2):2 932-2 943. |
[61] | 段骅, 俞正华, 徐云姬, 等. 灌溉方式对减轻水稻高温危害的作用[J]. 作物学报, 2012, 38(1):107-120 |
[62] | SHI J X, AN G Y, WEBER A P M, et al. Prospects for rice in 2050[J]. Plant Cell and Environment, 2023, 46(4): 1 037-1 045. |
[63] | LI X M, CHAO D Y, WU Y, et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827-833. |
[64] | LI J, ZHANG B L, DUAN P G, et al. An endoplasmic reticulum-associated degradation-related E2-E3 enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice[J]. The Plant Cell, 2023, 35(3): 1 076-1 091. |
[65] | XU Y F, ZHANG L, OU S J, et al. Natural variations of SLG1 confer high-temperature tolerance in indica rice[J]. Nature Communications, 2020, 11: 5 441. |
[66] | LIU J, ZHANG C, WEI C, et al. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice[J]. Plant Physiology, 2016, 170(1): 429-443. |
[67] | QIAO B, ZHANG Q, LIU D, et al. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2[J]. Journal of Experimental Botany, 2015, 66(19): 5 853-5 866. |
[68] | XIAO N, GAO Y, QIAN H J, et al. Identification of genes related to cold tolerance and a functional allele that confers cold tolerance[J]. Plant Physiology, 2018, 177: 1 108-1 123. |
[69] | ASHRAF E K, BI Y M, KOSALA R, et al. The rice r2r3-myb transcription factor OSMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism[J]. PLoS ONE, 2012, 7(12): e52030. |
[70] | XIONG H, YU J, MIAO J, et al. Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging[J]. Plant Physiology, 2018, 178(1): 451-467. |
[71] | FANG Y, LIAO K, DU H, et al. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. Journal of Experimental Botany, 2015, 66(21): 6 803-6 817. |
[72] | YU C, HOANH N B, XIE Y, et al. Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice[J]. Frontiers in Plant Science, 2017, 8: 1 102. |
[73] | SB A, MNIA B, SSA B, et al. Overexpression of heterotrimeric G protein beta subunit gene (OsRGB1) confers both heat and salinity stress tolerance in rice[J]. Plant Physiology and Biochemistry, 2019, 144: 334-344. |
[74] | MISHRA N, SRIVASTAVA A P, ESMAEILI N, et al. Overexpression of the rice gene OsSIZ1 in Arabidopsis improves drought-, heat-, and salt-tolerance simultaneously[J]. Fish and Shellfish Immunology, 2018, 3(8): 1 122. |
[75] | KIM J H, LIM S D, JANG C S. Oryza sativa heat-induced RING finger protein 1 (OsHIRP1) positively regulates plant response to heat stress[J]. Plant Molecular Biology, 2019, 99(6): 545-559. |
[76] | SCAFARO A P, ATWELL B J, MUYLAERT S, et al. A thermotolerant variant of rubisco activase from a wild relative improves growth and seed yield in rice under heat stress[J]. Frontiers in Plant Science, 2018, 9: 1 663. |
[77] | NUBANKOH P, WANCHANA S, SAENSUK C, et al. QTL-seq reveals genomic regions associated with spikelet fertility in response to a high temperature in rice (Oryza sativa L.)[J]. Plant Cell Reports, 2020, 39(1): 149-162. |
[78] | PS S, MITHRA S A, PRAKASH C, et al. High resolution mapping of qtls for heat tolerance in rice using a 5K SNP array[J]. Rice, 2017, 10(1): 20. |
[79] | DO J M, KIM H J, SHIN S Y. OsHSP 17.9, a small heat shock protein, confers improved productivity and tolerance to high temperature and salinity in a natural paddy field in transgenic rice plants[J]. Agriculture, 2023, 13: 931. |
[80] | 段骅, 佟卉, 刘燕清, 等. 高温和干旱对水稻的影响及其机制的研究进展[J]. 中国水稻科学, 2019, 33(3):206-218. |
[81] | 徐云姬, 唐树鹏, 简超群, 等. 多胺与乙烯对水稻籽粒灌浆、粒重和品质的调控作用[J]. 中国水稻科学, 2022, 36(4):327-335. |
[82] | 徐俊豪, 解嘉鑫, 熊若愚, 等. 播期对南方双季晚籼稻温光资源利用、产量及品质形成的影响[J]. 中国稻米, 2021, 27(5):115-120. |
[83] | DING Y M, WANG W G, ZHUANG Q L, et al. Adaptation of paddy rice in China to climate change: The effects of shifting sowing date on yield and irrigation water requirement[J]. Agricultural Water Management, 2019, 228: 105 890. |
[84] | 段骅, 傅亮, 剧成欣, 等. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响[J]. 中国水稻科学, 2013, 27(6):591-602. |
[85] | FU Y Y, GU Q Q, DONG Q, et al. Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism[J]. Molecules, 2019, 24(7): 1 395. |
[86] | TANG S, ZHANG H, LI L, et al. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period[J]. Functional Plant Biology, 2018, 45(9): 911-921. |
[87] | ZHANG W Y, HUANG H H, ZHOU Y J. Brassinosteroids mediate moderate soil-drying to alleviate spikelet degeneration under high temperature during meiosis of rice[J]. Plant Cell and Environment, 2023, 46: 1 340-1 362. |
[1] | 潘林, 弥春霞, 徐青山, 魏倩倩, 孔亚丽, 朱练峰, 田文昊, 朱春权, 张均华. 解磷细菌解磷机制研究进展及其在水稻上的应用[J]. 中国稻米, 2024, 30(3): 1-9. |
[2] | 陈君, 周洪, 包祖达, 丁杨东, 戴夏萍, 张胜. “设施甜瓜-水稻”水旱轮作高效栽培模式研究[J]. 中国稻米, 2024, 30(3): 102-104. |
[3] | 方浩俊, 周锡跃. 稻作文化遗产活化赋能乡村游乐产业的几个设计思路[J]. 中国稻米, 2024, 30(3): 107-112. |
[4] | 邵迪, 丁紫娟, 胡仁, 肖大康, 侯俊, 张鑫, 徐霄, 方慧, 管宇, 李贝, 江天, 张卫峰. 新型高效绿色氮肥管理对水稻产量形成与氮素利用及氨挥发损失的影响[J]. 中国稻米, 2024, 30(3): 18-25. |
[5] | 谭彪, 任慕瑶, 杨正鹏, 徐佳依, 郑华斌, 唐启源, 王慰亲. GA3和KNO2引发处理对水稻芽期生长、淀粉及呼吸代谢的影响[J]. 中国稻米, 2024, 30(3): 40-47. |
[6] | 严松, 高扬, 管立军, 李家磊, 王崑仑, 李波, 周野, 陈凯新, 卢淑雯. 发芽糙米易煮米生产方法的研究[J]. 中国稻米, 2024, 30(3): 53-58. |
[7] | 李超, 赫兵, 王晓航, 郎红, 吴小阳, 姚亮, 罗立强, 杨德亮, 王帅, 陈殿元, 严光彬. 东北稻区淹水胁迫下水稻反应机理及减灾措施[J]. 中国稻米, 2024, 30(3): 59-62. |
[8] | 熊雪, 曹雪仙, 向镜, 陈惠哲, 武辉, 张义凯, 王亚梁, 王志刚, 王晶卿, 徐一成, 赵福建, 张玉屏. 水田覆膜直播压槽与覆盖物对水稻出苗的影响[J]. 中国稻米, 2024, 30(3): 63-66. |
[9] | 方伟, 李欢欢, 林漫婷. 主销区县域粮食生产托管发展调研与思考——以广东省东源县为例[J]. 中国稻米, 2024, 30(3): 72-77. |
[10] | 王勋, 朱练峰, 张连胜, 汪玉军, 闵佳鑫, 鄂志国. 江苏省1982—2023年审定水稻品种分析[J]. 中国稻米, 2024, 30(3): 88-90. |
[11] | 李建强, 费冰雁, 赵川. 新型锌肥对水稻产量和品质的影响[J]. 中国稻米, 2024, 30(3): 98-101. |
[12] | 徐春春, 纪龙, 陈中督, 方福平. 2023年我国水稻产业形势分析及2024年展望[J]. 中国稻米, 2024, 30(2): 1-4. |
[13] | 王杰. 优质杂交晚籼稻新组合色香优明月丝苗的选育与应用[J]. 中国稻米, 2024, 30(2): 102-104. |
[14] | 刘思慧, 明珂, 陈国庆, 冯国忠. 一种抗稻曲病菌的摩氏假单胞菌JP2-207及其抗性机制初探[J]. 中国稻米, 2024, 30(2): 13-17. |
[15] | 李媛媛, 焦洪鹏, 冯先翠, 曹鹏, 江海燕, 雷满奇. 施用硒内源调控剂对水稻吸收硒、镉和砷的影响[J]. 中国稻米, 2024, 30(2): 18-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||