中国稻米 ›› 2024, Vol. 30 ›› Issue (3): 1-9.DOI: 10.3969/j.issn.1006-8082.2024.03.001
• 专论与研究 • 下一篇
潘林1,2,#(), 弥春霞2,#(), 徐青山1, 魏倩倩1,3, 孔亚丽1, 朱练峰1, 田文昊1, 朱春权1,*(), 张均华1,*()
收稿日期:
2023-12-19
出版日期:
2024-05-20
发布日期:
2024-05-20
通讯作者:
* zhangjunhua@caas.cn,zhuchunquan@caas.cn
作者简介:
#共同第一作者:236198425@qq.com,swxmcx@126.com
基金资助:
PAN Lin1,2,#(), MI Chunxia2,#(), XU Qingshan1, WEI Qianqian1,3, KONG Yali1, ZHU Lianfeng1, TIAN Wenhao1, ZHU ChunQuan1,*(), ZHANG Junhua1,*()
Received:
2023-12-19
Online:
2024-05-20
Published:
2024-05-20
Contact:
* zhangjunhua@caas.cn,zhuchunquan@caas.cn
About author:
#Co-first author: 236198425@qq.com,swxmcx@126.com
摘要:
磷是植物生长不可缺少的元素。土壤中总磷含量丰富,但可被植物直接吸收利用的有效磷含量却很低。传统上主要通过施用磷肥提高缺磷地区的作物产量。然而,施入土壤中的磷不仅易被固定,还会转化成难以被植物直接吸收利用的有机磷,从而降低植物对磷的吸收利用率,造成环境污染。解磷细菌具有将土壤中难溶态磷转化为可被植物直接吸收利用的有效磷的功能,提高植物对磷的吸收利用率。解磷细菌种类繁多,作用机制复杂且影响因素众多。本文综述了解磷细菌解磷机制的研究进展,总结了解磷细菌在水稻生产上的应用情况,以为提高稻田土壤难溶态磷的利用效率提供理论依据。
中图分类号:
潘林, 弥春霞, 徐青山, 魏倩倩, 孔亚丽, 朱练峰, 田文昊, 朱春权, 张均华. 解磷细菌解磷机制研究进展及其在水稻上的应用[J]. 中国稻米, 2024, 30(3): 1-9.
PAN Lin, MI Chunxia, XU Qingshan, WEI Qianqian, KONG Yali, ZHU Lianfeng, TIAN Wenhao, ZHU ChunQuan, ZHANG Junhua. Research Progress on Phosphorus Solubilization Mechanism of Phosphorus Solubilizing Bacteria and Its Application in Rice Production[J]. China Rice, 2024, 30(3): 1-9.
[1] | SULEMAN M, YASMIN S, RASUL M, et al. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat[J]. PLoS One, 2018, 13(9): e0204408. |
[2] | 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1):1-7. |
[3] | ADNAN M, SHAH Z, FAHAD S, et al. Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils[J]. Scientific Reports, 2018, 8(1): 4 339. |
[4] | 梅言, 戴传超, 贾永. 外生菌根真菌及其菌根辅助细菌协同解磷的研究进展[J]. 生态学杂志, 2022, 41(8):1 619-1 627. |
[5] | 余旋. 四川核桃主产区根际解磷细菌研究[D]. 成都: 四川农业大学, 2011. |
[6] | 王义, 贺春萍, 郑肖兰, 等. 土壤解磷微生物研究进展[J]. 安徽农学通报, 2009, 15(9):60-64. |
[7] | 张芮瑞. 耐高温解磷微生物的筛选及解磷机制的初探[D]. 贵阳: 贵州大学, 2020. |
[8] | NICHOLAS O, RICHARD D L, SAMUEL K, et al. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates[J]. Frontiers in Microbiology, 2015, 6: 745. |
[9] | 张云翼, 邹碧莹. 土壤解磷细菌的研究进展[J]. 现代农业科技, 2008(15):182-184. |
[10] | 孙亚钦, 叶盛嘉, 范国安, 等. 麦田土壤解磷细菌的筛选及其解磷能力研究[J]. 西北农业学报, 2022, 31(3):379-387. |
[11] | LIANG J L, LIU J, JIA P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining[J]. The ISME Journal, 2020, 14(6): 1 600-1 613. |
[12] | 杨春波. 油松根围土壤中解有机磷细菌的研究[D]. 呼和浩特: 内蒙古农业大学, 2014. |
[13] | 马春浩. 解磷微生物及其应用研究综述[J]. 安徽农学通报, 2007, 13(4):34-36. |
[14] | PAN L, CAI B. Phosphate-solubilizing bacteria: Advances in their physiology, molecular mechanisms and microbial community effects[J]. Microorganisms, 2023, 11(12): 2 904. |
[15] | GERRETSEN F C. The influence of micro-organism on the phosphate intaken by the plant[J]. Plant & Soil, 1948, 1: 51-81. |
[16] | 黄雪娇, 王晗, 李振轮. 解磷微生物的研究进展[J]. 安徽农业科学, 2013, 41(19):8 083-8 084. |
[17] | 曾汇文, 李倩如, 王雅士, 等. 土壤解磷细菌解磷机制及其促生作用综述[J]. 湘南学院学报, 2022, 43(2):12-20. |
[18] | 张进良, 张霁. 解磷微生物在农业应用中的研究进展[J]. 商丘师范学院学报, 2014, 30(12):70-73. |
[19] | 谢金宏. 野生稻根际细菌改良盐碱地及水稻促生的研究[D]. 长春: 吉林农业大学, 2020. |
[20] | 吕俊, 于存. 一株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用[J]. 应用生态学报, 2020, 31(9):2 923-2 934. |
[21] | CHEN J Q, ZHAO G Y, WEI Y H, et al. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings[J]. Scientific Reports, 2021, 11(1): 9 081. |
[22] | PRAKASH J, ARORA N K. Phosphate-solubilizing Bacillus sp. enhances growth phosphorus uptake and oil yield of Mentha arvensis L[J]. 3 Biotech, 2019, 9(4): 126. |
[23] | KIM J H, KIM S J, NAM I H. Effect of treating acid sulfate soils with phosphate solubilizing bacteria on germination and growth of tomato (Lycopersicon esculentum L.)[J]. International Journal of Environmental Research and Public Health, 2021, 18(17): 8 919. |
[24] | 刘春菊, 杜传印, 梁子敬, 等. 高效解磷细菌菌株CT45-1的鉴定及其对烟草的促生作用[J]. 山东农业科学, 2019, 51(4):74-78. |
[25] | 肖坤, 崔延, 高丹阳, 等. 核桃根际解磷细菌的筛选及对核桃促生作用研究[J]. 河北农业大学学报, 2018, 41(5):49-54. |
[26] | 戴沈艳, 申卫收, 贺云举, 等. 一株高效解磷细菌的筛选及其在红壤性水稻土中的施用效果[J]. 应用与环境生物学报, 2011, 17(5):678-683. |
[27] | 李伟, 王金亭. 枯草芽孢杆菌与解磷细菌对苹果园土壤特性及果实品质的影响[J]. 江苏农业科学, 2018, 46(3):140-144. |
[28] | 李乐, 孙海, 刘政波, 等. 一株人参根区解磷细菌的筛选、鉴定及对人参生长的影响[J]. 中国土壤与肥料, 2017(6):163-170. |
[29] | 林启美, 赵小蓉, 孙焱鑫, 等. 四种不同生态系统的土壤解磷细菌数量及种群分布[J]. 土壤与环境, 2000, 9(1):34-37. |
[30] | 李春越, 薛英龙, 王益, 等. 长期施肥对黄土旱塬农田土壤氮素生理菌群和解磷菌的影响[J]. 生态学杂志, 2020, 39(11):3 658-3 667. |
[31] | 刘洁雯, 冯曾威, 朱红惠, 等. 柑橘园土壤中解磷细菌多样性及其功能潜力分析[J]. 生物资源, 2020, 42(5):568-575. |
[32] | 尹瑞龄. 我国旱地土壤的溶磷微生物[J]. 土壤, 1988(5):243-246. |
[33] | 春雪, 赵雨森, 辛颖, 等. 大兴安岭重度火烧迹地恢复后土壤磷形态与解磷细菌分布特征[J]. 应用生态学报, 2020, 31(2):388-398. |
[34] | 李明, 毕江涛, 王静. 宁夏不同地区盐碱化土壤细菌群落多样性分布特征及其影响因子[J]. 生态学报, 2020, 40(4):1 316-1 330. |
[35] | 赵小蓉, 林启美, 孙焱鑫, 等. 玉米根际与非根际解磷细菌的分布特点[J]. 生态学杂志, 2001, 20(6):62-64. |
[36] | 朱颖, 库永丽, 刘金良, 等. 黄土高原天然和人工油松林根际土壤解磷细菌群落特征及其功能[J]. 应用生态学报, 2021, 32(9):3 097-3 106. |
[37] | 林燕青, 吴承祯, 洪伟, 等. 解磷菌的研究进展[J]. 武夷科学, 2015, 31:161-169. |
[38] | OCHOA-LOZA F J, ARTIOLA J F, MAIER R M. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant[J]. Journal of Environmental Quality, 2001, 30(2): 479-485 |
[39] | 叶国平, 梁锦锋. 解磷细菌(PSB)解磷机理及应用研究进展[J]. 安徽农学通报, 2007, 13(9):53-54. |
[40] | CHENG G C, HE Z L, WANG Y J. Impact of pH on microbial biomass carbon and microbial biomass phosphorus in red soils[J]. Pedosphere, 2004, 14(1): 9-15. |
[41] | 王雪菲. 解磷细菌YL6在小白菜植株中的定殖及促生机制研究[D]. 杨凌: 西北农林科技大学, 2019. |
[42] | QURBAN A P, UMME A N, SHAMSHUDDIN J, et al. Effect of different Al concentrations on the PSB population (a) without plant, (b) with plant system[J]. PLoS One, 2014. |
[43] | 林英, 司春灿, 韩文华, 等. 解磷微生物研究进展[J]. 江西农业学报, 2017, 29(2):99-103. |
[44] | 孙合美. 水稻根际溶磷菌的溶磷效应及对植物的促生作用[D]. 长春: 吉林农业大学, 2016. |
[45] | 晋婷婷, 任嘉红, 刘瑞祥. 南方红豆杉根际解有机磷细菌的鉴定及其解磷特性和促生作用研究[J]. 西北植物学报, 2016, 36(9):1 819-1 827. |
[46] | 陈丹阳, 李汉全, 张炳火, 等. 两株解磷细菌的解磷活性及作用机制研究[J]. 中国生态农业学报, 2017, 25(3):410-418. |
[47] | KU Y L, XU G Y, TIAN X H, et al. Root colonization and growth promotion of soybean wheat and Chinese cabbage by Bacillus cereus YL6[J]. PLoS One, 2018, 13(11) : e0200181. |
[48] | SHEN M C, LI J G, DONG Y H, et al. Profiling of plant growth-promoting metabolites by phosphate-solubilizing bacteria in maize rhizosphere[J]. Plants (Basel, Switzerland), 2021, 10(6): 1 071. |
[49] | 张芮瑞. 耐高温解磷微生物的筛选及解磷机制的初探[D]. 贵阳: 贵州大学, 2020. |
[50] | 韩雪娇, 曾庆伟, 赵玉萍. 杨树根际解无机磷细菌Mp1-Ha4的鉴定及其解磷机理[J]. 生物技术通报, 2020, 36(3):141-147. |
[51] | MUHAMMAD T, UMAIRA K I, MUHAMMAD L, et al. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate[J]. Brazilian Journal of Microbiology, 2018, 49(1): 15-24. |
[52] | 张云霞, 雷鹏, 许宗奇, 等. 一株高效解磷菌Bacillus subtilis JT-1的筛选及其对土壤微生态和小麦生长的影响[J]. 江苏农业学报, 2016, 32(5):1 073-1 080. |
[53] | 刘胜亮, 朱舒亮, 祁先慧, 等. 四株解磷菌分泌有机酸与溶解磷酸三钙能力的研究[J]. 新疆农业科学, 2017, 54(6):1 114-1 121. |
[54] | 刘思岑. 新疆昌吉市土壤中解磷菌的分离及其在园艺植物中解磷效果的探究[D]. 太原: 山西农业大学, 2019. |
[55] | YAHYA M, ISLAM E U, RASUL M, et al. Differential root exudation and architecture for improved growth of wheat mediated by phosphate solubilizing bacteria[J]. Frontiers in Microbiology, 2021, 12: 744 094. |
[56] | HE D L, WAN W J. Phosphate-solubilizing bacterium acinetobacter pittii gp-1 affects rhizosphere bacterial community to alleviate soil phosphorus limitation for growth of soybean (Glycine max)[J]. Frontiers in Microbiology, 2021, 12: 737 116. |
[57] | MAHDI I, FAHSI N, HAFIDI M, et al. Plant growth enhancement using rhizospheric halotolerant phosphate solubilizing bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 isolated from Chenopodium quinoa Willd[J]. Microorganisms, 2020, 8(6): 948. |
[58] | LI G X, WU X Q, YE J R, et al. Characteristics of organic acid secretion associated with the interaction between Burkholderia multivorans WS-FJ9 and poplar root system[J]. BioMed Research International, 2018: 9 619 724. |
[59] | BRITO L F, LOPEZ M G, STRAUBE L, et al. Inorganic phosphate solubilization by rhizosphere bacterium Paenibacillus sonchi: Gene expression and physiological functions[J]. Frontiers in Microbiology, 2020, 11: 588 605. |
[60] | 魏喜喜, 杨智鹏, 马路婷, 等. 枣树根际解磷菌P7的溶磷特性[J]. 经济林研究, 2021, 39(3):122-133. |
[61] | 虞伟斌, 杨兴明, 沈其荣, 等. K3解磷菌的解磷机理及其对缓冲容量的响应[J]. 植物营养与肥料学报, 2010, 16(2):354-361. |
[62] | 管国强, 李倩, 季蓉蓉, 等. 1株溶磷细菌P0417的溶磷机制[J]. 江苏农业科学, 2015, 43(10):432-435. |
[63] | 伊鋆, 高晓蓉, 安利佳. 产气肠杆菌PSB28的解磷机理研究[J]. 中国农学通报, 2011, 27(27):245-249. |
[64] | 林英, 司春灿, 冯唐锴, 等. 不同碳氮钾源对香椿根际解磷菌溶磷效果的影响[J]. 北方园艺, 2018(20):1-7. |
[65] | 刘荣林, 蔡柏岩, 葛菁萍. 丛枝菌根真菌、根瘤菌和解磷细菌之间相互作用的研究进展[J]. 中国农学通报, 2020, 36(35):22-27. |
[66] | 韩雪娇. 杨树根际土壤解磷细菌的筛选、解磷特性及其油菜促生效应研究[D]. 淮安: 淮阴工学院, 2020. |
[67] | SASHIDHAR B, PODILE A R. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase[J]. Journal of Applied Microbiology, 2010, 109: 1-12. |
[68] | LIANG J L, LIU J, JIA P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining[J]. The ISME Journal, 2020, 14(6): 1 600-1 613. |
[69] | AN R, MOE LUKE A. Regulation of pyrroloquinoline quinone-dependent glucose dehydrogenase activity in the model rhizosphere-dwelling bacterium Pseudomonas putida KT2440[J]. Applied and Environmental Microbiology, 2016, 82(16): 4 955-4 964. |
[70] | MULLEN M D. Phosphorus in soils: Biological interactions[J]. Encyclopedia of Soils in the Environment, 2005: 210-216. |
[71] | XIE J G, YAN Z Q, WANG G F, et al. A bacterium isolated from soil in a karst rocky desertification region has efficient phosphate-solubilizing and plant growth-promoting ability[J]. Frontiers in Microbiology, 2021, 11: 625 450. |
[72] | XIE J B, SHI H W, DU Z L, et al. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species[J]. Scientific Reports, 2016, 6: 21 329. |
[73] | DING Y Q, YI Z L, FANG Y, et al. Multi-omics reveal the efficient phosphate-solubilizing mechanism of bacteria on rocky soil[J]. Frontiers in Microbiology, 2021, 12: 761 972. |
[74] | TRIPURA C, SVDHAKAR REDDY P, REDDY M K, et al. Glucose dehydrogenase of a rhizobacterial strain of Enterobacter asburiae involved in mineral phosphate solubilization shares properties and sequence homology with other members of enterobacteriaceae[J]. Indian Journal Microbiology, 2007, 47:126-131. |
[75] | 郭艺鹏. 枣根际解磷细菌的筛选及其解磷机理研究[D]. 乌鲁木齐: 新疆农业大学, 2016. |
[76] | LIU Y Q, WANG Y H, KONG W L, et al. Identification, cloning and expression patterns of the genes related to phosphate solubilization in Burkholderia multivorans WS-FJ9 under different soluble phosphate levels[J]. AMB Express, 2020, 10(1): 108. |
[77] | YADAV K, KUMAR C, ARCHANA G, et al. Pseudomonas fluorescens ATCC 13525 containing an artificial oxalate operon and Vitreoscilla hemoglobin secretes oxalic acid and solubilizes rock phosphate in acidic alfisols[J]. PLoS One, 2014, 9(4): e92400. |
[78] | ADHIKARY H, SANGHAVI P B, MACWAN S R, et al. Artificial citrate operon confers mineral phosphate solubilization ability to diverse fluorescent pseudomonads[J]. PLoS One, 2014, 9(9): e107554. |
[79] | 罗利均. 蜡状芽孢杆菌S458-1解磷机理研究及变异菌选育[D]. 重庆: 西南大学, 2021. |
[80] | MULLANEY E J, ULLAH A H, TURNER B, et al. Phytases: Attributes, catalytic mechanisms and applications[J]. Inositol Phosphates: Linking Agriculture and the Environment, 2006: 97-110. |
[81] | VALEEVA L R, NYAMSUREN C, SHARIPOVA M R, et al. Heterologous expression of secreted bacterial BPP and HAP phytases in plants stimulates Arabidopsis thaliana growth on phytate[J]. Frontiers in Plant Science, 2018, 9: 186. |
[82] | NEAL A L, ROSSMANN M, BREARLEY C, et al. Land-use influences phosphatase gene microdiversity in soils[J]. Environmental Microbiology, 2017, 19(7): 2 740-2 753. |
[83] | HEGYI A, NGUYEN T B K, POSTA K. Metagenomic analysis of bacterial communities in agricultural soils from vietnam with special attention to phosphate solubilizing bacteria[J]. Microorganisms, 2021, 9(9): 1 796. |
[84] | PANHWAR Q A, NAHER U A, SHAMSHUDDIN J, et al. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth[J]. PLoS One, 2014, 9(10): e97241. |
[85] | DUARAH I, DEKA M, SAIKIA N, et al. Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation[J]. 3 Biotech, 2011, 1(4): 227-238. |
[86] | 滕泽栋. 解磷菌协同铁基材料对铅污染土壤的修复作用及机制研究[D]. 北京: 北京林业大学, 2020. |
[87] | 董俊伟. 功能菌剂复配对邻苯二甲酸二丁酯污染土壤的修复研究[D]. 哈尔滨: 东北农业大学, 2017. |
[88] | ZHANG C A, CHEN H M, DAI Y, et al. Isolation and screening of phosphorus solubilizing bacteria from saline alkali soil and their potential for Pb pollution remediation[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1 134 310. |
[89] | 魏烈群. 荣成天鹅湖解磷菌的分离筛选及其对沉积物磷释放的影响[D]. 烟台: 烟台大学, 2021. |
[1] | 吴梦寅, 蔡炜, 钟笑涵, 杨建昌, 刘立军, 张伟杨. 高温胁迫对水稻籽粒灌浆与稻米品质影响及其机理研究进展[J]. 中国稻米, 2024, 30(3): 10-17. |
[2] | 陈君, 周洪, 包祖达, 丁杨东, 戴夏萍, 张胜. “设施甜瓜-水稻”水旱轮作高效栽培模式研究[J]. 中国稻米, 2024, 30(3): 102-104. |
[3] | 方浩俊, 周锡跃. 稻作文化遗产活化赋能乡村游乐产业的几个设计思路[J]. 中国稻米, 2024, 30(3): 107-112. |
[4] | 邵迪, 丁紫娟, 胡仁, 肖大康, 侯俊, 张鑫, 徐霄, 方慧, 管宇, 李贝, 江天, 张卫峰. 新型高效绿色氮肥管理对水稻产量形成与氮素利用及氨挥发损失的影响[J]. 中国稻米, 2024, 30(3): 18-25. |
[5] | 谭彪, 任慕瑶, 杨正鹏, 徐佳依, 郑华斌, 唐启源, 王慰亲. GA3和KNO2引发处理对水稻芽期生长、淀粉及呼吸代谢的影响[J]. 中国稻米, 2024, 30(3): 40-47. |
[6] | 严松, 高扬, 管立军, 李家磊, 王崑仑, 李波, 周野, 陈凯新, 卢淑雯. 发芽糙米易煮米生产方法的研究[J]. 中国稻米, 2024, 30(3): 53-58. |
[7] | 李超, 赫兵, 王晓航, 郎红, 吴小阳, 姚亮, 罗立强, 杨德亮, 王帅, 陈殿元, 严光彬. 东北稻区淹水胁迫下水稻反应机理及减灾措施[J]. 中国稻米, 2024, 30(3): 59-62. |
[8] | 熊雪, 曹雪仙, 向镜, 陈惠哲, 武辉, 张义凯, 王亚梁, 王志刚, 王晶卿, 徐一成, 赵福建, 张玉屏. 水田覆膜直播压槽与覆盖物对水稻出苗的影响[J]. 中国稻米, 2024, 30(3): 63-66. |
[9] | 方伟, 李欢欢, 林漫婷. 主销区县域粮食生产托管发展调研与思考——以广东省东源县为例[J]. 中国稻米, 2024, 30(3): 72-77. |
[10] | 王勋, 朱练峰, 张连胜, 汪玉军, 闵佳鑫, 鄂志国. 江苏省1982—2023年审定水稻品种分析[J]. 中国稻米, 2024, 30(3): 88-90. |
[11] | 李建强, 费冰雁, 赵川. 新型锌肥对水稻产量和品质的影响[J]. 中国稻米, 2024, 30(3): 98-101. |
[12] | 徐春春, 纪龙, 陈中督, 方福平. 2023年我国水稻产业形势分析及2024年展望[J]. 中国稻米, 2024, 30(2): 1-4. |
[13] | 王杰. 优质杂交晚籼稻新组合色香优明月丝苗的选育与应用[J]. 中国稻米, 2024, 30(2): 102-104. |
[14] | 刘思慧, 明珂, 陈国庆, 冯国忠. 一种抗稻曲病菌的摩氏假单胞菌JP2-207及其抗性机制初探[J]. 中国稻米, 2024, 30(2): 13-17. |
[15] | 李媛媛, 焦洪鹏, 冯先翠, 曹鹏, 江海燕, 雷满奇. 施用硒内源调控剂对水稻吸收硒、镉和砷的影响[J]. 中国稻米, 2024, 30(2): 18-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||