[1] |
FOLEY J A, RAMANKUTTY N, BRAUMAN K A, et al. Solutions for a cultivated planet[J]. Nature, 2011, 478(7369): 337-342.
|
[2] |
李文华, 赵瑞亮. 浅谈我国淡水池塘养殖面临的环境问题及对策[J]. 山西水利科技, 2017(1):91-93.
|
[3] |
孙永飞, 严力蛟, 梁尹明. 水稻生产中的农田生态问题与可持续发展对策[J]. 中国农学通报, 2005, 21(6):358-362.
|
[4] |
罗衡. 养殖鳖的引入对稻田水稻生长、产量及土壤微生物群落的影响[D]. 上海: 上海海洋大学, 2017.
|
[5] |
DEKNOCK A, DE TROYER N, HOUBRAKEN M, et al. Distribution of agricultural pesticides in the freshwater environment of the Guayas river basin (Ecuador)[J]. Science of The Total Environment, 2019, 646: 996-1 008.
|
[6] |
孙悦. 稻鱼共生对土壤微生境和鱼类内环境的影响及其互作关系研究[D]. 天津: 天津农学院, 2021.
|
[7] |
TILMAN D, CASSMAN K G, MATSON P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898): 671-677.
|
[8] |
CUI J L, LIU H B, WANG H Y, et al. Rice-animal co-culture systems benefit global sustainable intensification[J]. Earth's Future, 2023, 11(2).
|
[9] |
周明瑞. 稻田养殖禾花鲤肌肉品质研究[D]. 重庆: 西南大学, 2020.
|
[10] |
陈胜军, 张晓凡, 潘创, 等. 水产品品质评价研究进展[J]. 肉类研究, 2022, 36(6):53-59.
|
[11] |
焦雯珺. 全球重要农业文化遗产:浙江青田稻鱼共生系统[J]. 中国农业大学学报(社会科学版), 2017, 34(5):1.
|
[12] |
陈欣. 稻渔综合种养生态系统构建、技术规范与应用[Z]. 杭州: 浙江大学, 2018-11-29.
|
[13] |
黄跃成, 吴俊, 李华雄, 等. 新形势下稻渔综合种养的探究与实践——以四川隆昌为例[J]. 中国水产, 2020(11):30-32.
|
[14] |
REN W Z, HU L J, ZHANG J, et al. Can positive interactions between cultivated species help to sustain modern agriculture[J]. Frontiers in Ecology and the Environment, 2014, 12(9): 507-514.
|
[15] |
游宇. 福建稻渔综合种养产业发展形势分析[J]. 中国水产, 2019(4):46-49.
|
[16] |
张洁, 孙绍永, 武艳丽, 等. 唐山市曹妃甸区稻渔综合种养产业发展状况及对策分析[J]. 河北渔业, 2019(11):13-16.
|
[17] |
YIFAN L, TIAOYAN W, SHAODONG W, et al. Developing integrated rice-animal farming based on climate and farmers choices[J]. Agricultural Systems, 2023, 204: 103 554.
|
[18] |
“十三五”中国稻渔综合种养产业发展报告[J]. 中国水产, 2022(1):43-52.
|
[19] |
ZENG M Y, CISALPINO D, VARADARAJAN S, et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens[J]. Immunity, 2016, 44(3): 647-658.
|
[20] |
倪明理, 任勃, 陈灿, 等. 稻鱼(鳅)耦合对稻米品质的影响[J]. 作物研究, 2019, 33(5):398-401.
|
[21] |
HE J Z, FENG P F, LV C F, et al. Effect of a fish-rice co-culture system on the growth performance and muscle quality of tilapia (Oreochromis niloticus)[J]. Aquaculture Reports, 2020, 17: 100 367.
|
[22] |
于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2022)[J]. 中国水产, 2023(1):39-46.
|
[23] |
WU H Y, OHNUKI H, OTA S, et al. New approach for monitoring fish stress: A novel enzyme-functionalized label-free immunosensor system for detecting cortisol levels in fish[J]. Biosensors and Bioelectronics, 2017 15(93): 57-64.
|
[24] |
FAO. The state of world fisheries and aquaculture 2016: Contributing to food security and nutrition for all[M]. Rome, Italy: FAO, 2016.
|
[25] |
CHOWDHURY M, DEWAN S, WAHAB M, et al. Water quality parameters of the rice fields used for rice cum fish culture[J]. Bangladesh Journal of Fisheries, 2000, 23(1): 25-29.
|
[26] |
刘慧, 刘晨晨, 包剑锋. ω-3多不饱和脂肪酸治疗非酒精性脂肪肝的研究进展[J]. 医学研究杂志, 2017, 46(2):20-22.
|
[27] |
程小飞, 宋锐, 向劲, 等. 不同养殖模式和野生克氏原螯虾肌肉营养成分分析与评价[J]. 现代食品科技, 2021, 37(4):87-95.
|
[28] |
崔雁娜, 郝贵杰, 林峰, 等. 两种养殖模式红螯螯虾肌肉营养及质构比较[J]. 食品与发酵工业, 2020, 46(21):115-120.
|
[29] |
姚志勇, 万金庆, 庞文燕, 等. 真空冷诱导对冰温贮藏罗非鱼片鲜度和滋味的影响[J]. 现代食品科技, 2014, 30(2):198-203.
|
[30] |
张艳凌. 小龙虾品质评价及其加工和贮藏特性研究[D]. 合肥: 合肥工业大学, 2021.
|
[31] |
冯雪, 蔡培华, 王艳, 等. 海拔高度对山区稻田养殖鲫鱼肌肉品质的影响[J]. 现代农业科技, 2020(18):184-185.
|
[32] |
ZHENG P, ZENG B, ZHOU C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism[J]. Molecular Psychiatry, 2016, 21(6): 786-796.
|
[33] |
ZHU L X, BAKER R D, ZHU R X, et al. Gut microbiota produce alcohol and contribute to NAFLD[J]. Gut: Journal of the British Sciety of Gastroenterology, 2016, 65(7): 1 232.
|
[34] |
LE CHATELIER E, NIELSEN T, QIN J, et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature, 2013, 500(7464): 541-546.
|
[35] |
DING X, JIN F, XU J W, et al. The impact of aquaculture system on the microbiome and gut metabolome of juvenile Chinese softshell turtle (Pelodiscus sinensis)[J]. iMeta, 2022, 1(2).
|
[36] |
CHEN X, FAN L M, QIU L P, et al. Metagenomics analysis reveals compositional and functional differences in the gut microbiota of red swamp crayfish, procambarus clarkii, grown on two different culture environments[J]. Frontiers in Microbiology, 2021, 12: 735 190.
|
[37] |
SULLAM K E, ESSINGER S D, LOZUPONE C A, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis[J]. Molecular Ecology, 2012, 21(13): 3 363-3 378.
|
[38] |
LIU Q, LONG Y N, LI B, et al. Rice-shrimp culture: A better intestinal microbiota, immune enzymatic activities, and muscle relish of crayfish (Procambarus clarkii) in Sichuan Province[J]. Applied Microbiology and Biotechnology, 2020, 104(21): 9 413-9 420.
|
[39] |
WEI D D, XING C G, HOU D W, et al. Distinct bacterial communities in the environmental water, sediment and intestine between two crayfish-plant coculture ecosystems[J]. Applied Microbiology and Biotechnology, 2021, 105(12): 5 087-5 101.
|
[40] |
黄锦. 不同施肥模式下稻-克氏原螯虾养殖田块水体、土壤和肠道微生物的研究[D]. 上海: 上海海洋大学, 2019.
|