[1] |
SUN W X, FAN J, FANG A F, et al. Ustilaginoidea virens: Insights into an emerging rice pathogen[J]. Annual Review of Phytopathology, 2020, 25(58): 363-385.
|
[2] |
孙春来, 王晓芹, 张和兰, 等. 水稻稻曲病不同发病模式对水稻产量影响观察[J]. 中国植保导刊, 2016, 11(4):35-38.
|
[3] |
YUKIKO K, MIKA N, SHIGEO I, et al. Ustiloxin: A phytotoxin and a mycotoxin from false smuth balls on rice panicles[J]. Tetrahedron Letters, 1992, 33(29): 4 157-4 160.
|
[4] |
孙伟波. 稻曲球中稻绿核菌素及其制备,检测分析与生物活性[D]. 北京: 中国农业大学, 2016.
|
[5] |
SONG J H, WANG Y F, YIN W X, et al. Effect of chemical seed treatment on rice false smut control in field[J]. Plant Disease, 2021, 105(10): 3 218-3 223.
|
[6] |
CHAKRABORTY D. Plant growth promoting rhizobacteria as biofertilizers: An alternative for sustainable agriculture[J]. Plant & Soil, 2014, 255(2): 571-586.
|
[7] |
VESSEY J K. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant & Soil, 2003, 255 (2): 571-586.
|
[8] |
LUGTENBERG B. Plant-growth-promoting rhizobacteria[J]. Annual Review of Microbiology, 2009, 1: 541-556.
|
[9] |
THOMASHOW L S. Biological control of plant root pathogens[J]. Current Opinion in Biotechnology, 1996, 7(3): 343-347.
|
[10] |
SNYDER A B, WOROBO R W. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety[J]. Journal of the Science of Food & Agriculture, 2013, 94(1): 28-44.
|
[11] |
BAUER J S, GHEQUIRE M G K, NETT M, et al. Biosynthetic origin of the antibiotic pseudopyronines A and B in Pseudomonas putida BW11M1[J]. Chembiochem A European Journal of Chemical Biology, 2015, 16(17): 2 491-2 497.
|
[12] |
许蒙, 陈锡玮, 胡昌华. 真菌单模块非核糖体肽合成酶的基因组挖掘与天然产物研究[J]. 中国抗生素杂志, 2018, 43(6):645-653.
|
[13] |
MERCADO-BLANCO J, VAN DER DRIFT K M, OLSSON P E, et al. Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374[J]. Journal of Bacteriology, 2001, 183(6): 1 909-1 920.
|
[14] |
TSUDA M, MIYAZAKI H, NAKAZAWA T. Genetic and physical mapping of genes involved in pyoverdin production in Pseudomonas aeruginosa PAO[J]. Journal of Bacteriology, 1995, 177(2): 423-431.
|
[15] |
CEZARD C, FARVACQUES N, SONNET P. Chemistry and biology of pyoverdines, Pseudomonas primary siderophores[J]. Current Medicinal Chemistry, 2015, 22(2): 165-186.
|
[16] |
LAVILLE J, BLUMER C, SCHROETTER C V, et al. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0[J]. Journal of Bacteriology, 1998, 180(12): 3 187-3 196.
|
[17] |
MICHELSEN C F, STOUGAARD P. Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain Pseudomonas fluorescens In5 from Greenland is highly dependent on growth medium[J]. Canadian Journal of Microbiology, 2012, 58(4): 381-390.
|
[18] |
KANG B R, ANDERSON A J, KIM Y C. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 exhibits nematicidal activity against Meloidogyne hapla[J]. Plant Pathology Journal, 2018, 34(1): 35-43.
|
[19] |
HARWOOD C R, JEAN-MARIE M, SUSANNE P, et al. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group[J]. FEMS Microbiology Reviews, 2018, 42(6): 721-738.
|