中国稻米 ›› 2024, Vol. 30 ›› Issue (1): 1-9.DOI: 10.3969/j.issn.1006-8082.2024.01.001
收稿日期:
2023-07-17
出版日期:
2024-01-20
发布日期:
2024-01-23
作者简介:
第一作者:yuzix2081520032@163.com
YU Zixuan1,2(), LIU Xinyong2, ZHANG Jian2, LIANG Dacheng1
Received:
2023-07-17
Online:
2024-01-20
Published:
2024-01-23
About author:
1st author: yuzix2081520032@163.com
摘要:
生长素(auxin,IAA)是一种重要的植物生长激素,普遍存在于各种植物和藻类中,其参与组织分化、器官发生、形态建成、向性反应和顶端优势等生理过程以及对复杂环境适应过程。目前双子叶植物拟南芥中生长素调控生长发育的机制已经基本清楚,但是生长素怎样在单子叶植物水稻中行使功能,仍有很多未解之谜。本文综述了近20年国内外关于生长素调控单子叶植物水稻根、茎、叶、花和籽粒生长发育的细胞学和生理机制,重点归纳整理了生长素相关基因对水稻生长发育的分子调控机制,展望了未来水稻中依靠生长素途径精准合成运输生长素的调控,以及利用生长素突变体表型变异的开发前景。
中图分类号:
喻梓轩, 刘新勇, 张健, 梁大成. 生长素调控水稻生长发育的研究进展[J]. 中国稻米, 2024, 30(1): 1-9.
YU Zixuan, LIU Xinyong, ZHANG Jian, LIANG Dacheng. Research Progress of Auxin Regulation on Growth and Development of Rice[J]. China Rice, 2024, 30(1): 1-9.
[1] | MASUDA Y, KAMISAKA S. Discovery of auxin[M]// UNG S D, YANG S F. Discoveries In Plant Biology: Volume III. Singapore: World Scientific Publishing Co Pte Ltd, 2000: 43-57. |
[2] | BENNETT K D. The power of movement in plants[J]. Trends in Ecology & Evolution, 1998, 13(9): 339-340. |
[3] | BOYSEN JENSEN P. Uber die Leitung des phototropischen Reizes in Avenakeimpflanzen[J]. Berichte Der Deutschen Botanischen Gesellschaft, 1910, 28: 118-120. |
[4] | PAAL A. Uber phototropische Reizleitungen[J]. Berichte Der Deutschen Botanischen Gesellschaft, 1914, 32: 499-502. |
[5] | WENT F W. On growth-accelerating substances in the coleoptile of Avena sativa[C]. Proc Kon Akad Wetensch Amsterdam, 1926: 10-19. |
[6] | KOGL F, HAAGEN-SMIT A. The Chemistry of the Growth Substance[J]. Proceedings Academy Science Amsterdam, 1931: 1 411-1 416. |
[7] | KOGL F, HAAGEN-SMIT A, ERXLEBEN H. Uber ein neues Auxin (Hetero-auxin) aus Harn. 11[J]. Mitteilung Uber Pflanzliche Wachstumsstoffe, 1934: 90-103. |
[8] | KOGL F, ERXEBEN H. Uber die Konstitution der Auxine a und b. 10[J]. Mitteilung Uber Pflanzliche Wachstumsstoffe, 1934: 51-73. |
[9] | HAAGEN-SMIT A, LEECH W, BERGREN W. The estimation, isolation, and identification of auxins in plant materials[J]. American Journal of Botany, 1942: 500-506. |
[10] | HAAGEN-SMIT A, DANDLIKER W, WITTWER S, et al. Isolation of 3-indoleacetic acid from immature corn kernels[J]. American Journal of Botany, 1946: 118-120. |
[11] | KEY J L. Hormones and nucleic acid metabolism[J]. Annual Review of Plant Physiology, 1969, 20(1): 449-474. |
[12] | RAYLE D L, CLELAND R E. The Acid Growth Theory of auxin-induced cell elongation is alive and well[J]. Plant Physiology, 1992, 99(4): 1 271-1 274. |
[13] | HAGER A, MENZEL H, KRAUSS A. [Experiments and hypothesis concerning the primary action of auxin in elongation growth][J]. Planta, 1971, 100(1): 47-75. |
[14] | VANDERHOEF L N, STAHL C A. Separation of two responses to auxin by means of cytokinin inhibition[J]. Proceedings of the National Academy of Sciences, 1975, 72(5): 1 822-1 825. |
[15] | VANDERHOEF L N, STAHL C A, WILLIAMS C A, et al. Additional evidence for separable responses to auxin in soybean hypocotyl[J]. Plant Physiology, 1976, 57(5): 817-819. |
[16] | LIN W, ZHOU X, TANG W, et al. TMK-based cell-surface auxin signalling activates cell-wall acidification[J]. Nature, 2021, 599(7884): 278-282. |
[17] | LI L, VERSTRAETEN I, ROOSJEN M, et al. Cell surface and intracellular auxin signalling for H+ fluxes in root growth[J]. Nature, 2021, 599(7884): 273-277. |
[18] | WANG Y, ZHANG T, WANG R, et al. Recent advances in auxin research in rice and their implications for crop improvement[J]. Journal of Experiment Botany, 2018, 69(2): 255-263. |
[19] | ZHAO H, MA T, WANG X, et al. OsAUX 1 controls lateral root initiation in rice (Oryza sativa L.)[J]. Plant, Cell & Environment, 2015, 38(11): 2 208-2 222. |
[20] | YU C, SUN C, SHEN C, et al. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.)[J]. The Plant Journal, 2015, 83(5): 818-830. |
[21] | GIRI J, BHOSALE R, HUANG G, et al. Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate[J]. Nature Communications, 2018, 9(1): 1-7. |
[22] | WANG M, QIAO J, YU C, et al. The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress[J]. Plant, Cell & Environment, 2019, 42(4): 1 125-1 138. |
[23] | YE R, WU Y, GAO Z, et al. Primary root and root hair development regulation by OsAUX4 and its participation in the phosphate starvation response[J]. Journal of Integrative Plant Biology, 2021, 63(8): 1 555-1 567. |
[24] | MIYASHITA Y, TAKASUGI T, ITO Y. Identification and expression analysis of PIN genes in rice[J]. Plant Science, 2010, 178(5): 424-428. |
[25] | XU M, ZHU L, SHOU H X, et al. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice[J]. Plant and Cell Physiology, 2005, 46(10): 1 674-1 681. |
[26] | LI P J, WANG Y H, QIAN Q, et al. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J]. Cell Research, 2007, 17(5): 402-410. |
[27] | SUN H W, TAO J Y, BI Y, et al. OsPIN1b is involved in rice seminal root elongation by regulating root apical meristem activity in response to low nitrogen and phosphate[J]. Scientific Reports, 2018, 8(1): 1-11. |
[28] | QI Y H, WANG S K, SHEN C J, et al. OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa)[J]. New Phytologist, 2012, 193(1): 109-120. |
[29] | INUKAI Y, SAKAMOTO T, UEGUCHI-TANAKA M, et al. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling[J]. The Plant Cell, 2005, 17(5): 1 387-1 396. |
[30] | KITOMI Y, OGAWA A, KITANO H, et al. CRL4 regulates crown root formation through auxin transport in rice[J]. Plant Root, 2008, 2: 19-28. |
[31] | ZHANG G, XU N, CHEN H, et al. OsMADS25 regulates root system development via auxin signalling in rice[J]. The Plant Journal, 2018, 95(6): 1 004-1 022. |
[32] | XU N, CHU Y, CHEN H, et al. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging[J]. PLoS Genetics, 2018, 14(10): e1007662. |
[33] | LI H, SUN H Y, JIANG J H, et al. TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice[J]. Plant Biotechnology Journal, 2021, 19(1): 64-73. |
[34] | JEONG D-H, PARK S, ZHAI J, et al. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage[J]. The Plant Cell, 2011, 23(12): 4 185-4 207. |
[35] | YUE E, LI C, LI Y, et al. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa)[J]. Plant Molecular Biology, 2017, 94(4): 469-480. |
[36] | LI Y, HE Y, LIU Z, et al. OsSPL14 acts upstream of OsPIN1b and PILS6b to modulate axillary bud outgrowth by fine‐tuning auxin transport in rice[J]. The Plant Journal, 2022, 111(4): 1 167-1 182. |
[37] | ZHAO S Q, XIANG J J, XUE H W. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control[J]. Molecular Plant, 2013, 6(1): 174-187. |
[38] | ZHANG S N, WANG S K, XU Y X, et al. The auxin response factor, OsARF 19, controls rice leaf angles through positively regulating OsGH 3-5 and OsBRI 1[J]. Plant, Cell & Environment, 2015, 38(4): 638-654. |
[39] | HUANG G Q, HU H, VAN DE MEENE A, et al. AUXIN RESPONSE FACTORS 6 and 17 control the flag leaf angle in rice by regulating secondary cell wall biosynthesis of lamina joints[J]. The Plant Cell, 2021, 33(9): 3 120-3 133. |
[40] | QIAO J, ZHANG Y, HAN S, et al. OsARF4 regulates leaf inclination via auxin and brassinosteroid pathways in rice[J]. Frontiers in Plant Science, 2022, 13: 979 033. |
[41] | HU Z, LU S J, WANG M J, et al. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant, 2018, 11(5): 736-749. |
[42] | LIN L, ZHAO Y, LIU F, et al. Narrow leaf1 (NAL1) regulates leaf shape by affecting cell expansion in rice (Oryza sativa L.)[J]. Biochemical and Biophysical Research Communications, 2019, 516(3): 957-962. |
[43] | CHEN M, LUO J, SHAO G, et al. Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1[J]. Plant Cell Reports, 2012, 31(5): 863-872. |
[44] | SAZUKA T, KAMIYA N, NISHIMURA T, et al. A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos[J]. The Plant Journal, 2009, 60(2): 227-241. |
[45] | SONG S, CHEN Y, LIU L, et al. OsFTIP7 determines auxin-mediated anther dehiscence in rice[J]. Nature Plants, 2018, 4(7): 495-504. |
[46] | OHMORI S, KIMIZU M, SUGITA M, et al. MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice[J]. The Plant Cell, 2009, 21(10): 3 008-3 025. |
[47] | AGRAWAL G K, ABE K, YAMAZAKI M, et al. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene[J]. Plant Molecular Biology, 2005, 59(1): 125-135. |
[48] | PRASAD K, PARAMESWARAN S, VIJAYRAGHAVAN U. OsMADS1, a rice MADS‐box factor, controls differentiation of specific cell types in the lemma and palea and is an early‐acting regulator of inner floral organs[J]. The Plant Journal, 2005, 43(6): 915-928. |
[49] | KHANDAY I, YADAV S R, VIJAYRAGHAVAN U. Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways[J]. Plant Physiology, 2013, 161(4): 1 970-1 983. |
[50] | PRASAD K, SRIRAM P, KUMAR S C, et al. Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals[J]. Development Genes and Evolution, 2001, 211(6): 281-290. |
[51] | ATTIA K A, ABDELKHALIK A F, AMMAR M H, et al. Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice[J]. Current Issues in Molecular Biology, 2009, 11(S1): 29-34. |
[52] | HUANG J, LI Z, ZHAO D. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice[J]. Scientific Reports, 2016, 6(1): 1-14. |
[53] | MORITA Y, KYOZUKA J. Characterization of OsPID, the rice ortholog of PINOID, and its possible involvement in the control of polar auxin transport[J]. Plant and Cell Physiology, 2007, 48(3): 540-549. |
[54] | HE Y, YAN L, GE C, et al. PINOID is required for formation of the stigma and style in rice[J]. Plant Physiology, 2019, 180(2): 926-936. |
[55] | XU M, TANG D, CHENG X, et al. OsPINOID regulates stigma and ovule initiation through maintenance of the floral meristem by auxin signaling[J]. Plant Physiology, 2019, 180(2): 952-965. |
[56] | WU H M, XIE D J, TANG Z S, et al. PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice[J]. Plant Biotechnology Journal, 2020, 18(8): 1 778-1 795. |
[57] | ZHAO Z, WANG C, YU X, et al. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice[J]. Proceeding of National Academy of Science of the United States of America, 2022, 119(36): e2121671119. |
[58] | YAMAMOTO Y, KAMIYA N, MORINAKA Y, et al. Auxin biosynthesis by the YUCCA genes in rice[J]. Plant Physiology, 2007, 143(3): 1 362-1 371. |
[59] | XU Y X, XIAO M Z, LIU Y, et al. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice[J]. Plant Molecular Biology, 2017, 94(1): 97-107. |
[60] | ZHAO J, LI W, SUN S, et al. The rice small auxin-up RNA gene OsSAUR33 regulates seed vigor via sugar pathway during early seed germination[J]. International Journal of Molecular Sciences, 2021, 22(4): 1 562. |
[61] | OVERVOORDE P, FUKAKI H, BEECKMAN T. Auxin control of root development[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(6): a001537. |
[62] | SIEBERER T, LEYSER O. Auxin transport, but in which direction?[J]. Science, 2006, 312(5775): 858-860. |
[63] | ROSS J J, O'NEILL D P, WOLBANG C M, et al. Auxin-gibberellin interactions and their role in plant growth[J]. Journal of Plant Growth Regulation, 2001, 20(4): 336-353. |
[64] | YIN C X, GAN L J, DENNY N G, et al. Decreased panicle-derived indole-3-acetic acid reduces gibberellin A1 level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A[J]. Journal of Experimental Botany, 2007, 58(10): 2 441-2 449. |
[65] | FERARU E, VOSOLSOBE S, FERARU M I, et al. Evolution and structural diversification of PILS putative auxin carriers in plants[J]. Frontiers in Plant Science, 2012, 3: 227. |
[66] | BEZIAT C, BARBEZ E, FERARU M I, et al. Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition[J]. Nature Plants, 2021, 3: 17 105. |
[67] | BOGAERT K A, BLOMME J, BEECKMAN T, et al. Auxin's origin: do PILS hold the key?[J]. Trends in Plant Science, 2022, 27(3): 227-236. |
[68] | ZHOU L J, XIAO L T, XUE H W. Dynamic cytology and transcriptional regulation of rice lamina joint development[J]. Plant Physiology, 2017, 174(3): 1 728-1 746. |
[69] | ZHANG S W, LI C H, CAO J, et al. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation[J]. Plant Physiology, 2009, 151(4): 1 889-1 901. |
[70] | DU H, WU N, FU J, et al. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice[J]. Journal of Experimental Botany, 2012, 63(18): 6 467-6 480. |
[71] | YOSHIDA H, NAGATO Y. Flower development in rice[J]. Journal of Experimental Botany, 2011, 62(14): 4 719-4 730. |
[72] | BARAZESH S, MCSTEEN P. Hormonal control of grass inflorescence development[J]. Trends in Plant Science, 2008, 13(12): 656-662. |
[73] | PAGNUSSAT G C, ALANDETE-SAEZ M, BOWMAN J L, et al. Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte[J]. Science, 2009, 324(5935): 1 684-1 689. |
[74] | SUNDBERG E, OSTERGAARD L. Distinct and dynamic auxin activities during reproductive development[J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(6): a001628. |
[75] | MCSTEEN P. Auxin and monocot development[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(3): a001479. |
[76] | BLAZQUEZ M A, FERRANDIZ C, MADUENO F, et al. How floral meristems are built[J]. Plant Molecular Biology, 2006, 60(6): 855-870. |
[77] | WEIGEL D, ALVAREZ J, SMYTH D R, et al. LEAFY controls floral meristem identity in Arabidopsis[J]. Cell, 1992, 69(5): 843-859. |
[78] | 张亚萍, 习珺珺, 于丽霞, 等. LEAFY(LFY)基因在花发育网络调控中的研究进展[J]. 现代农业科技, 2012(9): 11-13. |
[79] | LI W, ZHOU Y, LIU X, et al. LEAFY controls auxin response pathways in floral primordium formation[J]. Science Signaling, 2013, 6(270): ra23-ra23. |
[80] | MOYROUD E, KUSTERS E, MONNIAUX M, et al. LEAFY blossoms[J]. Trends in Plant Science, 2010, 15(6): 346-352. |
[81] | LIU X, HUANG J, WANG Y, et al. The role of floral organs in carpels, an Arabidopsis loss‐of‐function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression[J]. The Plant Journal, 2010, 62(3): 416-428. |
[82] | WANG J W, WANG L J, MAO Y B, et al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis[J]. The Plant Cell, 2005, 17(8): 2 204-2 216. |
[83] | MALLORY A C, BARTEL D P, BARTEL B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes[J]. The Plant Cell, 2005, 17(5): 1 360-1 375. |
[84] | LIU P P, MONTGOMERY T A, FAHLGREN N, et al. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post‐germination stages[J]. The Plant Journal, 2007, 52(1): 133-146. |
[85] | LIU X, ZHANG H, ZHAO Y, et al. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2013, 110(38): 15 485-15 490. |
[86] | WON C, SHEN X, MASHIGUCHI K, et al. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES of ARABIDOPSIS and YUCCAs in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45): 18 518-18 523. |
[87] | XU X, E Z, ZHANG D, et al. OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice[J]. Plant Physiology, 2021, 185(3): 934-950. |
[1] | 马瑗蕊, 石艳平, 黄其颖, 任佳佳, 郭俏俏, 徐彦, 徐炜杰, 柳丹. 水肥和钝化剂阻控水稻吸收镉机制的研究进展[J]. 中国稻米, 2024, 30(1): 10-17. |
[2] | 王振洋, 王冀川, 袁杰, 王奉斌. 不同肥密措施对南疆水稻抗倒伏及干物质生产特性和产量的影响[J]. 中国稻米, 2024, 30(1): 101-107. |
[3] | 毛名义, 杨文荟, 管艳伟, 潘宗东, 周丽洁, 余显权. 基于表型性状构建禾初级核心种质[J]. 中国稻米, 2024, 30(1): 18-25. |
[4] | 陈云, 孟轶, 翁文安, 陈雨琼, 张洪程, 廖萍. 硝化抑制剂双氰胺施用对水稻产量和温室气体排放的影响[J]. 中国稻米, 2024, 30(1): 26-29. |
[5] | 薛颖昊, 孙国峰, 眭鑫梅, 陈旭蕾, 孙仁华, 徐志宇. 不同腐熟剂对麦秸腐解率与稻田水环境的影响[J]. 中国稻米, 2024, 30(1): 30-35. |
[6] | 董振杰, 陆尧, 李京咏, 窦志, 张洪程, 高辉. 稻田综合种养土壤重金属空间变异特征与质量安全评价研究进展[J]. 中国稻米, 2024, 30(1): 36-38. |
[7] | 何旎清, 程朝平, 晋艺丹, 黄凤凰, 李生平, 杨德卫. 稻曲病发病规律、病菌功能基因组以及免疫反应的遗传机制[J]. 中国稻米, 2024, 30(1): 39-46. |
[8] | 梁文豪, 胡时开, 圣忠华, 魏祥进, 焦桂爱, 邵高能, 谢黎虹, 王玲, 唐绍清, 胡培松. 外源氨基酸对层出镰刀菌菌丝生长和伏马毒素合成的影响[J]. 中国稻米, 2024, 30(1): 47-52. |
[9] | 冯春炜, 王晓林, 郭庆林, 张琰, 姚丽娜, 金茜雯, 符致昊, 黄玉韬, 曹栋栋, 朱叶峰. 机械干燥对水稻种子质量影响的研究进展[J]. 中国稻米, 2024, 30(1): 53-57. |
[10] | 高义卓, 向镜, 叶天承, 孙凯旋, 陈惠哲, 张玉屏, 张义凯, 王亚梁, 王志刚, 张运波. 不同光质配比的LED光源补光对水稻机插秧苗生长发育的影响[J]. 中国稻米, 2024, 30(1): 58-62. |
[11] | 林芗华. 稻谷对铅富集特性的品种差异及其安全风险[J]. 中国稻米, 2024, 30(1): 63-68. |
[12] | 张容慧, 张秀锦, 柴冠群, 范成五, 何腾兵, 秦松. 贵州青黄泥田重金属元素低积累水稻品种筛选[J]. 中国稻米, 2024, 30(1): 75-83. |
[13] | 邹旭东, 李荣平, 曹士民, 蔡福, 米娜, 王笑影. 盘锦水稻田碳通量变化特征研究[J]. 中国稻米, 2024, 30(1): 84-92. |
[14] | 童纪氚, 戎雪利, 任萍, 褚光, 王丹英. 水稻无人机直播产量、效益分析及技术要点[J]. 中国稻米, 2024, 30(1): 98-100. |
[15] | 占小登, 王凯, 曹立勇. 近年我国水稻遗传育种研究进展与展望[J]. 中国稻米, 2023, 29(6): 1-4. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||