[1] |
许杰龙. 微生物种间直接电子传递对水稻土产甲烷过程的影响及机制研究[D]. 北京: 中国科学院大学, 2014.
|
[2] |
张玉铭, 胡春胜, 张佳宝, 等. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J]. 中国生态农业学报, 2011, 19(4):966-975.
|
[3] |
IPCC, STOCKERT F, QIN D, et al. The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[J]. Computational Geometry, 2013.
|
[4] |
中华人民共和国农业农村部种植业管理司. 农作物数据库[DB /OL]. ( 2017-01- 25) [2022-10-17].
|
[5] |
严圣吉, 邓艾兴, 尚子吟, 等. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4):930-941.
|
[6] |
张卫建, 张艺, 邓艾兴, 等. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析[J]. 中国稻米, 2021, 27(4):53-57.
|
[7] |
陈松文, 刘天奇, 曹凑贵, 等. 水稻生产碳中和现状及低碳稻作技术策略[J]. 华中农业大学学报, 2021, 40(3):3-12.
|
[8] |
CHI Z F, WANG W J, LI H, et al. Soil organic matter and salinity as critical factors affecting the bacterial community and function of phragmites australis dominated riparian and coastal wetlands[J]. Science of the Total Environment, 2020.
|
[9] |
YAGI K, MINAMI K. Effect of organic matter application on methane emission from some Japanese paddy fields[J]. Soil Science and Plant Nutrition, 1990, 36(4): 599-610.
|
[10] |
WANG Y H, YANG H, YE C, et al. Effects of plant species on soil microbial processes and CH4 emission from constructed wetlands[J]. Environmental Pollution, 2013, 174: 273-278.
|
[11] |
LINQUIST B A, ADVIENTO BORBE M A, PITTELKOW C M, et al. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis[J]. Field Crops Research, 2012, 135: 10-21.
|
[12] |
张远. 微波遥感水稻种植面积提取、生物量反演与稻田甲烷排放模拟[D]. 杭州: 浙江大学, 2009.
|
[13] |
许欣, 陈晨, 熊正琴. 生物炭与氮肥对稻田甲烷产生与氧化菌数量和潜在活性的影响[J]. 土壤学报, 2016, 53(6):1517-1 527.
|
[14] |
马艳芹, 钱晨晨, 孙丹平, 等. 施氮水平对稻田土壤温室气体排放的影响[J]. 农业工程学报, 2016, 32(2):128-134.
|
[15] |
刘磊, 廖萍, 邵华, 等. 施石灰和秸秆还田对双季稻田土壤钾素表观平衡的互作效应[J]. 作物学报, 2022, 48(1):226-237.
|
[16] |
LIU S L, HUANG D Y, CHEN A L, et al. Differential responses of crop yields and soil organic carbon stock to fertilization and rice straw incorporation in three cropping systems in the subtropics[J]. Agriculture, Ecosystems and Environment, 2014, 184: 51-58.
|
[17] |
熊靖, 张旦麒, 石孝均, 等. 长期不同施肥与秸秆管理对紫色土水稻田CH4排放的影响[J]. 西南师范大学学报(自然科学版), 2013, 38(5):98-102.
|
[18] |
李桂花, 周吉祥, 张建峰, 等. 有机肥和缓控肥替代部分化肥降低双季稻田综合净温室效应[J]. 植物营养与肥料学报, 2020, 26(6):1017-1 024.
|
[19] |
NAZARIES L, TOTTEY W, ROBINSON L J, et al. Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming[J]. Soil Biology and Biochemistry, 2015, 89: 123-134.
|
[20] |
曹启民, 吴鹏飞, 赵春梅, 等. 海南植胶区土壤有机质纬度分布特征及其气候影响因素[J]. 广东农业科学, 2012, 39(7):85-87.
|
[21] |
JIANG Y, QIAN H Y, WANG L, et al. Limited potential of harvest index improvement to reduce methane emissions from rice paddies[J]. Global Change Biology, 2019, 25(2): 686-698.
|
[22] |
YUN C, LI S Y, ZHANG Y J, et al. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields[J]. Soil Biology and Biochemistry, 2019, 129:191-200.
|
[23] |
蒋米亮, 李鹏飞, 王维奇. 铁炉渣在稻田甲烷减排中的应用[J]. 实验室研究与探索, 2012, 31(5):17-18.
|
[24] |
LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371-379.
|
[25] |
袁伟玲, 曹凑贵, 程建平, 等. 间歇灌溉模式下稻田CH4和N2O排放及温室效应评估[J]. 中国农业科学, 2008, 41(12):4294-4 300.
|
[26] |
LU Y H, WASSMANN R, NEUE H U, et al. Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil[J]. Soil Science Society of America Journal, 2000, 64(6): 2 011-2 017.
|
[27] |
SINGH S, KASHYAP A K, SINGH J S. Methane flux in relation to growth and phenology of a high yielding rice variety as affected by fertilization[J]. Plant and Soil, 1998, 201 (1) : 157-164.
|
[28] |
孙菁菁. 氮肥及生物炭对土壤微生物活性和氨氧化的研究[D]. 北京: 北京科技大学, 2016.
|
[29] |
ZHENG X H, YAO Z S, WANG R, et al. A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates[J]. Agriculture Ecosystems & Environment, 2012, 152(3): 1-9.
|
[30] |
SASS R L, ANDREWS J A, DING A, et al. Spatial and temporal variability in methane emissions from rice paddies: Implications for assessing regional methane budgets[J]. Nutrient Cycling in Agroecosystems, 2002, 64: 3-7.
|
[31] |
袁新生, 赵炎, 唐瑞杰, 等. 生物炭及与秸秆联用对我国热带地区稻田土壤CH4和N2O的影响[J]. 热带生物学报, 2022, 13(3):300-308.
|
[32] |
SCHUTZ H, SEILER W, CONRAD R. Influence of soil temperature on methane emission from rice paddy fields[J]. Biogeochemistry, 1990, 11(2): 77-95.
|
[33] |
BODELIER P, LAANOROEK H J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments[J]. Fems Microbiology Ecology, 2004, 47(3): 265-277.
|
[34] |
王绍华, 曹卫星, 丁艳锋, 等. 水氮互作对水稻氮吸收与利用的影响[J]. 中国农业科学, 2004, 37(4):497-501.
|
[35] |
BECK D A C, KALYUZHNAYA M G, MALFATTI S A, et al. A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the methylococcaceae and the methylophilaceae[J]. PeerJ, 2013.
|