[1] |
ZOU M M, ZHOU S L, ZHOU Y J, et al. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review[J]. Environmental Pollution, 2021, 280(3):116965. doi:10.1016/j.envpol.2021.116965.
|
[2] |
BASHIR S, HUSSAIN Q, ZHU J. Efficiency of KOH-modified rice straw-derived biochar for reducing cadmium mobility, bioaccessibility and bioavailability risk index in red soil[J]. Pedosphere, 2020, 30(6): 874-882.
|
[3] |
CHEN Y N, LI M L, LI Y P, et al. Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: Adsorption behavior and mechanisms[J]. Bioresource Technology, 2021, doi: 10.1016/j.biortech.2020.124413.
|
[4] |
RAJENDRAN M, SHI L Z, WU C, et al. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soilerice system[J]. Chemosphere, 2019, 222: 314-322.
|
[5] |
TAN X, WEI W X, XU C B, et al. Manganese-modified biochar for highly efficient sorption of cadmium[J]. Environmental Science and Pollution Research, 2020, 27: 9 126-9 134.
|
[6] |
ZHANG H Y, YUE X P, LI F, et al. Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups[J]. Science of the Total Environment, 2018, doi: 10.1016/j.scitotenv.2018.03.071.
|
[7] |
ZHANG M, SHAN S D, CHEN Y G, et al. Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: effects of biochar type and dosage, rice variety, and pollution level[J]. Environmental Geochemistry & Health, 2019, 41(1): 43-52.
|
[8] |
KHUM-IN V, SUK-IN J, IN-AI P, et al. Combining biochar and zerovalent iron (BZVI) as a paddy field soil amendment for heavy cadmium (Cd) contamination decreases Cd but increases zinc and iron concentrations in rice grains: A field-scale evaluation[J]. Process Safety and Environmental Protection, 2020, 141: 222-233.
|
[9] |
尚艺婕, 张秀, 王海波, 等. 秸秆生物质炭对镉污染水稻土根际酶活性的影响[J]. 农业环境科学学报, 2016, 35(8):1532-1 540.
|
[10] |
陈雪娇, 林启美, 肖弘扬, 等. 改性油菜秸秆生物质炭吸附/解吸Cd2+特征[J]. 农业工程学报, 2019, 35(18):221-228.
|
[11] |
沈玲芳, 董隽, 单胜道, 等. 磁性生物质炭制备方法及其对水体Pb2+吸附特性的影响[J]. 环境工程, 2021, 39(9):48-55.
|
[12] |
王秀梅, 安毅, 秦莉, 等. 对比施用生物炭和肥料对土壤有效镉及酶活性的影响[J]. 环境化学, 2018, 37(1):67-74.
|
[13] |
梁佳怡, 王泳森, 段敏, 等. 生物质炭对土壤有效态镉及植物镉吸收影响的整合分析[J]. 广西师范大学学报(自然科学版), 2021, 39(6):1-12.
|
[14] |
丁春生, 邹邦文, 缪佳, 等. 高锰酸钾改性活性炭的表征及其吸附Cu2+的性能[J]. 中南大学学报(自然科学版), 2012, 43(5):427-433.
|
[15] |
蒋子旸, 徐敏, 伍钧. 高铁酸钾/高锰酸钾改性生物炭对Cd2+的吸附研究[J]. 农业环境科学学报, 2021, 40(4):876-883.
|
[16] |
LIU T Q, LAWLUVY Y, SHI Y, et al. Adsorption of cadmium and lead from aqueous solution using modified biochar: A review[J]. Journal of Environmental Chemical Engineering, 2022, doi:10.1016/j.jece.2021.106502.
|
[17] |
毛凌俊. 氯化铁改性活性炭吸附Cr(Ⅵ)、Pb(Ⅱ)的性能研究[D]. 杭州: 浙江工业大学, 2015.
|
[18] |
尹小红, 陈佳娜, 雷涛, 等. 生物炭对土壤化学性质及水稻苗期生长的影响[J]. 中国稻米, 2021, 27(5):90-92.
|
[19] |
方波, 肖腾伟, 苏娜娜, 等. 水稻镉吸收及其在各器官间转运积累的研究进展[J]. 中国水稻科学, 2021, 35(3):225-237.
|
[20] |
蒋敏华, 丁懿, 王星, 等. 田间条件下石灰和生物炭对水稻稻谷吸收镉的影响[J]. 浙江农业科学, 2022, 63(1):20-22.
|
[21] |
冯敬云, 聂新星, 刘波, 等. 不同钝化剂修复镉污染稻田及其对水稻吸收镉的影响[J]. 湖北农业科学, 2021, 60(22):51-55.
|