中国稻米 ›› 2023, Vol. 29 ›› Issue (3): 15-23.DOI: 10.3969/j.issn.1006-8082.2023.03.003
段俊枝1(), 杨翠萍1, 王楠1, 齐学礼2, 冯丽丽1, 燕照玲1, 齐红志1, 陈海燕1, 张会芳1, 卓文飞1,*(), 李莹3,*()
收稿日期:
2022-11-26
出版日期:
2023-05-20
发布日期:
2023-05-23
通讯作者:
卓文飞,李莹
作者简介:
第一联系人:第一作者:junzhi2004@163.com
基金资助:
DUAN Junzhi1(), YANG Cuiping1, WANG Nan1, QI Xueli2, FENG Lili1, YAN Zhaoling1, QI Hongzhi1, CHEN Haiyan1, ZHANG Huifang1, ZHUO Wenfei1,*(), LI Ying3,*()
Received:
2022-11-26
Online:
2023-05-20
Published:
2023-05-23
Contact:
ZHUO Wenfei, LI Ying
About author:
First author contact:1st author: junzhi2004@163.com
摘要:
干旱、盐、低温、高温等非生物胁迫严重影响水稻的生长发育及产量,提高非生物胁迫下水稻产量对保障国家粮食安全具有重要的现实意义。利用基因工程技术提高非生物胁迫下水稻产量是优于传统育种的有效途径。目前,已证实的可提高非生物胁迫下水稻产量的基因主要有调节基因和功能基因。文章综述了这些基因提高干旱、盐、低温、高温等单一胁迫及复合胁迫条件下水稻产量的研究进展,并分析了存在的问题,以期为水稻抗逆、高产育种提供参考。
中图分类号:
段俊枝, 杨翠萍, 王楠, 齐学礼, 冯丽丽, 燕照玲, 齐红志, 陈海燕, 张会芳, 卓文飞, 李莹. 利用基因工程技术提高非生物胁迫下水稻产量的研究进展[J]. 中国稻米, 2023, 29(3): 15-23.
DUAN Junzhi, YANG Cuiping, WANG Nan, QI Xueli, FENG Lili, YAN Zhaoling, QI Hongzhi, CHEN Haiyan, ZHANG Huifang, ZHUO Wenfei, LI Ying. Progress on Improving Rice Yield under Abiotic Stress by Genetic Engineering[J]. China Rice, 2023, 29(3): 15-23.
[1] | ZHAO C, LIU B, PIAO S L, et al. Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114: 9 326-9 331. |
[2] | RAZA A, RAZZAQ A, MEHMOOD S S, et al. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review[J]. Plants, 2019, doi: 10.3390/plants8020034. |
[3] | GAO Y, WU M Q, ZHANG M J, et al. A maize phytochrome-interacting factors protein ZmPIF1 enhances drought tolerance by inducing stomatal closure and improves grain yield in Oryza sativa[J]. Plant Biotechnology Journal, 2018, 16(7): 1 375-1 387. |
[4] | CHEN X L, JIANG L R, ZHENG J S, et al. A missense mutation in Large Grain Size 1 increases grain size and enhances cold tolerance in rice[J]. Journal of Experimental Botany, 2019, 70(15): 3 851-3 866. |
[5] | ZENG Y, WEN J, ZHAO W, et al. Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR-Cas9 system[J]. Frontiers in Plant Science, 2020, doi: 10.3389/fpls.2019.01663. |
[6] | CHOI J, LEE W, AN G, et al. OsCBE1, a substrate receptor of cullin4-based E3 ubiquitin ligase, functions as a regulator of abiotic stress response and productivity in rice[J]. International Journal of Molecular Sciences, 2021, doi: 10.3390/ijms22052487. |
[7] | PARK S I, KIM J J, KIM H S, et al. Enhanced glutathione content improves lateral root development and grain yield in rice plants[J]. Plant Molecular Biology, 2021, 105(4-5): 365-383. |
[8] | PARK S I, KIM Y S, KIM J J, et al. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions[J]. Journal of Plant Physiology, 2017, 215: 39-47. |
[9] | LEE K, BACK K. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield[J]. Journal of Pineal Research, 2017, doi: 10.1111/jpi.12392. |
[10] | WANG P, XU X, TANG Z, et al. OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice[J]. Frontiers in Plant Science, 2018, doi: 10.3389/fpls.2018.01330. |
[11] | ZENG Z M, XIONG F J, YU X H, et al. Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.)[J]. Plant Physiology and Biochemistry, 2016, 109: 62-71. |
[12] | LO S F, CHENG M L, HSING Y C, et al. Rice Big Grain 1 promotes cell division to enhance organ development, stress tolerance and grain yield[J]. Plant Biotechnology Journal, 2020, 18(9): 1 969-1 983. |
[13] | KANG J F, LI J M, GAO S, et al. Overexpression of the leucine-rich receptor-like kinase gene LRK2 increases drought tolerance and tiller number in rice[J]. Plant Biotechnology Journal, 2017, 15(9): 1 175-1 185. |
[14] | FANG Y J, LIAO K F, DU H, et al. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance throughmodulation of reactive oxygen species in rice[J]. Journal of Experimental Botany, 2015, 66(21): 6 803-6 817. |
[15] |
JIN Y, PAN W Y, ZHENG X F, et al. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues[J]. Plant Molecular Biology, 2018, 98(1-2): 51-65.
PMID |
[16] |
GAO Y, WU M Q, ZHANG M J, et al. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty[J]. Plant Molecular Biology, 2018, 97(4-5): 311-323.
PMID |
[17] | TIAN P, LIU J F, MOU C L, et al. GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice[J]. Journal of Integrative Plant Biology, 2019, 61(11): 1 171-1 185. |
[18] | VISHAL B, KRISHNAMURTHY P, RAMAMOORTHY R, et al. OsTPS8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition[J]. New Phytologist, 2019, 221(3): 1 369-1 386. |
[19] | YIN W C, XIAO Y H, NIU M, et al. ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice[J]. The Plant Cell, 2020, 32(7): 2 292-2 306. |
[20] | DONG N Q, SUN Y W, GUO T, et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice[J]. Nature Communications, 2020, doi: 10.1038/s41467-020-16403-5. |
[21] | SELVARAJ M G, ISHIZAKI T, VALENCIA M, et al. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field[J]. Plant Biotechnology Journal, 2017, 15(11): 1 465-1 477. |
[22] | BAKSHI A, MOIN M, KUMAR M U, et al. Ectopic expression of Arabidopsis Target of Rapamycin (AtTOR) improves water-use efficiency and yield potential in rice[J]. Scientific Reports, 2017, doi: 10.1038/srep42835. |
[23] | CHEN J G, QI T T, HU Z, et al. OsNAR2.1 positively regulates drought tolerance and grain yield under drought stress conditions in rice[J]. Frontiers in Plant Science, 2019, doi: 10.3389/fpls.2019.00197. |
[24] | USMAN B, NAWAZ G, ZHAO N, et al. Precise editing of the OsPYL9 gene by RNA-guided Cas9 nuclease confers enhanced drought tolerance and grain yield in rice (Oryza sativa L.) by regulating circadian rhythm and abiotic stress responsive proteins[J]. International Journal of Molecular Sciences, 2020, doi: 10.3390/ijms21217854. |
[25] | DEY A, SAMANTA M K, GAYEN S, et al. The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression[J]. BMC Plant Biology, 2016, doi: 10.1186/s12870-016-0845-x. |
[26] | LOU D J, CHEN Z, YU D Q, et al. SAPK2 contributes to rice yield by modulating nitrogen metabolic processes under reproductive stage drought stress[J]. Rice, 2020, doi: 10.1186/s12284-020-00395-3. |
[27] | CHEN X, WANG Y F, L B, et al. The NAC family transcription factor OsNAP confers abiotic stress response throughthe ABA pathway[J]. Plant and Cell Physiology, 2014, 55(3): 604-619. |
[28] | SHEN J B, LV B, LUO L Q, et al. The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice[J]. Scientific Reports, 2017, doi: 10.1038/srep40641. |
[29] | HU H H, DAI M Q, YAO J L, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 12 987-12 992. |
[30] | REDILLAS C, JEONG J S, KIM Y S, et al. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions[J]. Plant Biotechnology Journal, 2012, 10(7): 792-805. |
[31] | JEONG J S, KIM Y S, BAEK K H, et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under fielddrought conditions[J]. Plant Physiology, 2010, 153(1): 185-197. |
[32] | JEONG J S, KIM Y S, REDILLAS M C, et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field[J]. Plant Biotechnology Journal, 2013, 11(1): 101-114. |
[33] | LEE D K, CHUNG P J, JEONG J S, et al. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance[J]. Plant Biotechnology Journal, 2017, 15(6): 754-764. |
[34] | OH S J, KIM Y S, KWON C W, et al. Overexpression of the transcription factor AP37 in rice improves grain yieldunder drought conditions[J]. Plant Physiology, 2009, 150: 1 368-1 379. |
[35] | JUNG H, CHUNG P J, PARK S, et al. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance[J]. Plant Biotechnology Journal, 2017, 15(10): 1 295-1 308. |
[36] | XU W Y, TANG W S, WANG C X, et al. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway[J]. Frontiers in Plant Science, 2020, doi: 10.3389/fpls.2020.00785. |
[37] | CHEN Y S, HO T D, LIU L, et al. Sugar starvation-regulated MYBS2 and 14-3-3 protein interactions enhance plant growth, stress tolerance, and grain weight in rice[J]. Proceedings of The National Academy of Sciences of The United States of America, 2019, 116(43): 21 925-21 935. |
[38] | DEY A, SAMANTA M K, GAYEN S, et al. Enhanced gene expression rather than natural polymorphism in coding sequence of the OsbZIP23 determines drought tolerance and yield improvement in rice genotypes[J]. PLoS One, 2016, doi: 10.1371/journal.pone.0150763. |
[39] | CHANG Y, NGUYEN B H, XIE Y J, et al. Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice[J]. Frontiers in Plant Science, 2017, doi: 10.3389/fpls.2017.01102. |
[40] | Chander S, Almeida D M, Serra T S, et al. OsICE1 transcription factor improves photosynthetic performance and reduces grain losses in rice plants subjected to drought[J]. Environmental and Experimental Botany, 2 018, 150: 88-98. |
[41] | PARK S I, KIM J J, SHIN S Y, et al. ASR enhances environmental stress tolerance and improves grain yield by modulating stomatal closure in rice[J]. Frontiers in Plant Science, 2020, doi: 10.3389/fpls.2019.01752. |
[42] | SELVARAJ M G, JAN A, ISHIZAKI T, et al. Expression of the CCCH-tandem zinc finger protein gene OsTZF5 under a stress-inducible promoter mitigates the effect of drought stress on rice grain yield under field conditions[J]. Plant Biotechnology Journal, 2020, 18(8): 1 711-1 721. |
[43] | NUTAN K K, SINGLA-PAREEK S L, PAREEK A. The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice[J]. Journal of Experimental Botany, 2020, 71(2): 684-698. |
[44] | XU C, LUO M, SUN X, et al. SiMYB19 from foxtail millet (Setaria italica) confers transgenic rice tolerance to high salt stress in the field[J]. International Journal of Molecular Sciences, 2022, doi: 10.3390/ijms23020756. |
[45] | ALFATIH A, WU J, JAN S U, et al. Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field[J]. Plant, Cell & Environment, 2020, 43(11): 2 743-2 754. |
[46] | TIAN Q X, SHEN L K, LUAN J X, et al. Rice shaker potassium channel OsAKT2 positively regulates salt tolerance and grain yield by mediating K+ redistribution[J]. Plant, Cell & Environment, 2021, 44(9): 2 951-2 965. |
[47] | LIU C T, SCHLPPI M R, MAO B G, et al. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage[J]. Plant Biotechnology Journal, 2019, 17(9): 1 834-1 849. |
[48] | XU Y, WANG R, WANG Y, et al. A point mutation in LTT1 enhances cold tolerance at the booting stage in rice[J]. Plant, Cell & Environment, 2020, 43(4): 992-1007. |
[49] | EL-KEREAMY A, BI Y M, RANATHUNGE K, et al. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism[J]. PLoS One, 2012, doi: 10.1371/journal.pone.0052030. |
[50] | TANG Y T, LI X, LU W, et al. Enhanced photorespiration in transgenic rice over-expressing maize C4 phosphoenolpyruvate carboxylase gene contributes to alleviating low nitrogen stress[J]. Plant Physiology and Biochemistry, 2018, 130: 577-588. |
[51] | ACHARY V M M, SHERI V, MANNA M, et al. Overexpression of improved EPSPS gene results in field level glyphosate tolerance and higher grain yield in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2 504-2 519. |
[52] | GUDDIMALLI R, SOMANABOINA A K, PALLE S R, et al. Overexpression of RNA-binding bacterial chaperones in rice leads to stay-green phenotype, improved yield and tolerance to salt and drought stresses[J]. Plant Physiology, 2021, 173(4): 1 351-1 368. |
[53] | EL-ESAWI M A, ALAYAFI A A. Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.)[J]. Genes, 2019, doi: 10.3390/genes10010056. |
[54] |
WANG C G, WANG G K, GAO Y, et al. A cytokinin-activation enzyme-like gene improves grain yield under various field conditions in rice[J]. Plant Molecular Biology, 2020, 102: 373-388.
PMID |
[55] | SODA N, GUPTA B K, ANWAR K, et al. Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress[J]. Scientific Reports, 2019, doi: 10.1038/s41598-018-22131-0. |
[56] | ZENG Y, LI Q, WANG H Y, et al. Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress[J]. Plant Biotechnology Journal, 2018, 16(1): 310-321. |
[57] |
JOSHI R, SAHOO K K, SINGH A K, et al. Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions[J]. Journal of Experimental Botany, 2020, 71(2): 653-668.
PMID |
[58] | VERMA R K, KUMAR V V S, YADAV S K, et al. Overexpression of Arabidopsis ICE1 enhances yield and multiple abiotic stress tolerance in indica rice[J]. Plant Signaling & Behavior, 2020, doi: 10.1080/15592324.2020.1814547. |
[59] | SENGUPTA S, MUKHERJEE S, BASAK P, et al. Significance of galactinol and raffinose family oligosaccharide synthesis in plants[J]. Frontiers in Plant Science, 2015, doi: 10.3389/fpls.2015.00656. |
[60] |
LIU X Q, HUANG D M, TAO J Y, et al. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport[J]. New Phytologist, 2014, 204: 74-80.
PMID |
[61] | UMEZAWA T, YOSHIDA R, MARUYAMA K, et al. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(49): 17 306-1 7311. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 胡江博, 任正鹏, 丁翔, 王朝全, 冯阳, 王笑见, 张翔, 胥南飞. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19. |
[3] | 王云翔, 咸云宇, 赵灿, 王维领, 霍中洋. 缓控释氮肥施用技术在水稻上应用研究进展与展望[J]. 中国稻米, 2023, 29(4): 20-26. |
[4] | 李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44. |
[5] | 薛莲, 段圣省, 郑兴飞, 殷得所, 董华林, 胡建林, 王红波, 查中萍, 郭英, 曹鹏, 徐得泽. 湖北省水稻生产发展现状及对策建议[J]. 中国稻米, 2023, 29(4): 45-47. |
[6] | 王昕, 刘炜, 马洪文, 贺奇, 冯伟东, 张益民, 李虹, 殷延勃. 宁夏优质稻育种历程、问题及展望[J]. 中国稻米, 2023, 29(4): 48-52. |
[7] | 孙志广, 刘艳, 李景芳, 周振玲, 邢运高, 徐波, 周群, 王德荣, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻萌发耐淹性鉴定评价方法研究及种质资源筛选[J]. 中国稻米, 2023, 29(4): 53-58. |
[8] | 王兴为, 王志成. 秸秆还田与深施氮肥对水稻叶片生理特征、氮素利用及产量的影响[J]. 中国稻米, 2023, 29(4): 59-65. |
[9] | 赫兵, 李超, 严永峰, 刘月月, 赫靖淇, 于天华, 王帅, 陈殿元, 严光彬. 水稻秸秆秋季水耙浆还田对土壤及水稻性状的影响[J]. 中国稻米, 2023, 29(4): 66-71. |
[10] | 董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析[J]. 中国稻米, 2023, 29(4): 84-89. |
[11] | 刘伟, 李胜男, 宋梦秋, 阮双, 何水华, 薛文侠, 李洪彬, 张真雨. 浅析我国粳稻育种现状及发展思路[J]. 中国稻米, 2023, 29(4): 9-12. |
[12] | 吴涛, 邓宏中, 赵迎曦, 杨琛, 郭昱, 赵有权, 谢志梅, 张立阳, 杨远柱. 隆平高科水稻绿色通道2016—2021年审定品种分析[J]. 中国稻米, 2023, 29(4): 90-94. |
[13] | 邵泽毅, 谭旭生, 伍斌, 管恩相. 稻田小龙虾轮捕轮放寄养技术浅析[J]. 中国稻米, 2023, 29(4): 98-100. |
[14] | 黄日伟, 廖春良, 梁月宽, 杨绍意, 尚子帅, 姚云峰. 华浙优261在广西不同海拔作早中晚稻种植表现及高产栽培技术[J]. 中国稻米, 2023, 29(4): 106-107. |
[15] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||