中国稻米 ›› 2023, Vol. 29 ›› Issue (1): 44-54.DOI: 10.3969/j.issn.1006-8082.2023.01.007
收稿日期:
2022-10-08
出版日期:
2023-01-20
发布日期:
2023-01-17
通讯作者:
胡标林,张帆涛
作者简介:
xiaofeiyan0508@163.com
基金资助:
CHEN Yanhong1(), HU Biaolin2,*(), ZHANG Fantao1,*()
Received:
2022-10-08
Online:
2023-01-20
Published:
2023-01-17
Contact:
HU Biaolin, ZHANG Fantao
摘要:
水稻是我国主要的粮食作物之一,近65%的人口以稻米为主食。随着人们生活水平不断提高,对稻米品质的要求日趋提升,改善稻米品质尤为迫切。因此,优质水稻品种选育成为水稻育种研究的重要课题。本文对稻米外观品质、加工品质、蒸煮食味品质和营养品质等性状的QTL定位、克隆和功能研究进行了概述,以期为稻米品质改良育种提供参考依据。
中图分类号:
陈燕红, 胡标林, 张帆涛. 稻米品质遗传分析研究现状[J]. 中国稻米, 2023, 29(1): 44-54.
CHEN Yanhong, HU Biaolin, ZHANG Fantao. Research Status of Genetic Analysis of Rice Quality[J]. China Rice, 2023, 29(1): 44-54.
[1] | 冷春旭, 闫平, 吴立成, 等. CRISPR/Cas9系统在稻米品质改良中的应用[J]. 分子植物育种, 2021, 19(14):4681-4 689. |
[2] | WANG H, ZHU S, DANG X, et al. Favorable alleles mining for gelatinization temperature, gel consistency and amylose content in Oryza sativa by association mapping[J]. BMC Genetics, 2019, 20(1): 1-18. |
[3] | TAKAYUKI K, JUN M. Identification and characteristics of quantitative trait locus for grain protein content, TGP12, in rice (Oryza sativa L.)[J]. Euphytica, 2018, 214(9): 165. |
[4] | 林建荣, 吴明国, 石春海. 粳型杂交稻稻米外观品质性状的遗传效应研究[J]. 中国水稻科学, 2001, 15(2):93-96. |
[5] | HUANG R, JIANG L, ZHENG J, et al. Genetic bases of rice grain shape: So many genes, so little known[J]. Trends in Plant Science, 2012, 18(4): 218-226. |
[6] | ZHANG Y D, XING Y U, CAI-LIN W, et al. QTL mapping for grain size traits based on extra-large grain rice line TD70[J]. Rice Science, 2013, 20(6): 400-406. |
[7] | BIAN J M, SHI H, LI C J, et al. QTL mapping and correlation analysis for 1000-grain weight and percentage of grains with chalkiness in rice[J]. Journal of Genetics, 2013, 92(2): 281-287. |
[8] | XIAO Q, LI I, WEI Y, et al. Construction of genetic map and mapping quantitative trait loci for grain shape-related traits in rice[J]. Journal of Southern Agriculture, 2014, 45(7): 1 154-1 159. |
[9] | GAO F Y, ZENG L H, QIU L, et al. QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice (Oryza sativa L.)[J]. Journal of Integrative Agriculture, 2016, 15 (8): 25-34. |
[10] | PENG Q, JIA L L, ZHANG D S, et al. QTL mapping for rice appearance quality traits based on a high-density genetic map in different environments[J]. Acta Agronomica Sinica, 2018, 44(8): 1 248. |
[11] | ZHOU Y, HOU J, LI P, et al. Genetic dissection and validation of QTLs for grain shape and weight in rice and fine mapping of qGL1.3, a major QTL for grain length and weight[J]. Molecular Breeding, 2019, 39(12):170. |
[12] | ZHANG T, WANG S, SUN S, et al. Analysis of QTL for grain size in a rice chromosome segment substitution line Z1392 with long grains and fine mapping of qGL-6[J]. Rice, 2020, 13(1):40. |
[13] | WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects[J]. Theoretical & Applied Genetics, 2006, 112(7): 1 258-1 270. |
[14] | XIANG Y, WAN J W, ZHAI H Q, et al. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5[J]. Genetics, 2008, 179(4): 2 239-2 252. |
[15] | BAI X, LUO L, YAN W, et al. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7[J]. BMC Genetics, 2010, 11(1): 16. |
[16] | MAO H, SUN S, YAO J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences, 2010, 107(45): 19 579-19 584. |
[17] | GAO X, ZHANG J, ZHANG X, et al. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling[J]. The Plant Cell, 2019, 31(5): 1 077-1 093. |
[18] | ZHANG X, WANG J, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21 534-21 539. |
[19] | ISHIMARU K, HIROTSU N, MADOKA Y, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013, 45(6): 707-711. |
[20] | XU F, FANG J, OU S, et al. Variations in CYP78A13 coding region influence grain size and yield in rice[J]. Plant Cell & Environment, 2015, 38(4): 800-811. |
[21] |
JUN S X, TAKESHI K, MADOKA A, et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 76-81.
PMID |
[22] | KITAGAWA K, KURINAMI S, OKI K, et al. A novel kinesin 13 protein regulating rice seed length[J]. Plant & Cell Physiology, 2010, 51(8): 1 315-1 329. |
[23] | SONG X J, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown ring-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39(5): 623-630. |
[24] | WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008, 018(012): 1199-1209. |
[25] | SUN L, LI X, FU Y, et al. GS6, a member of the GRAS gene family, negatively regulates grain size in rice[J]. Journal of Integrative Plant Biology, 2013, 55(10): 938-949. |
[26] | LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1 266-1 269. |
[27] | LI J, CHU H, ZHANG Y, et al. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight[J]. Plos One, 2012, 7(3): e34231. |
[28] | SHI C I, DONG N I, GUO T, et al. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway[J]. The Plant Journal, 2020, 103(3):1174-1 188. |
[29] | WANG S, LI S, LIU Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. |
[30] | HUANG Y, BAI X, CHENG N, et al. Wide grain 7 increases grain width by enhancing H3K4me3 enrichment in the OsMADS1 promoter in rice (Oryza sativa L.)[J]. The Plant Journal, 2020, 102(3):517-528. |
[31] | DUAN P, NI S, WANG J, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nature Plants, 2015, 2(1): 15 203. |
[32] | GUO T, CHEN K, DONG N Q, et al. Grain size and number1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice[J]. The Plant Cell, 2018, 30(4): 871-888. |
[33] | LYU J, WANG D, DUAN P, et al. Control of grain size and weight by the GSK2-LARGE1/OML4 pathway in rice[J]. The Plant Cell, 2020, 32(6): 1 905-1 918. |
[34] | LI Y, FAN C, XING Y, et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[35] | ZHEN M, WANG, HAI X, et al. Reduction of pyruvate orthophosphate dikinase activity is associated with high temperature-induced chalkiness in rice grains[J]. Plant Physiology & Biochemistry, 2015, 89:76-84. |
[36] | HAO W, ZHU M Z, GAO J P, et al. Identification of quantitative trait loci for rice quality in a population of chromosome segment substitution lines[J]. Journal of Integrative Plant Biology, 2009, 51(5): 500-512. |
[37] | LU B, YANG C, XIE K, et al. Quantitative trait loci for grain-quality traits across a rice F2 population and backcross inbred lines[J]. Euphytica, 2013, 192(1): 25-35. |
[38] | BIAN J M, HE H H, LI C J, et al. Identification and analysis of QTLs for grain quality traits in rice using an introgression lines population[J]. Euphytica, 2014, 195(1):83-93. |
[39] | AIKE ZHU, YINGXIN, et al. Genetic dissection of qPCG1 for a quantitative trait locus for percentage of chalky grain in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2018, 9:1173. |
[40] | QIU X, YANG J, ZHANG F, et al. Genetic dissection of rice appearance quality and cooked rice elongation by genome-wide association study[J]. The Crop Journal, 2021, 9(5): 1 470-1 480. |
[41] | YANG G, LIU C, LI Y, et al. QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9[J]. Rice, 2016, 9(1): 41. |
[42] | ZHOU L, CHEN L, JIANG L, et al. Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2009, 118(3): 581-590. |
[43] | ZHAO X, DAYGON V D, MCNALLY K L, et al. Identification of stable QTLs causing chalk in rice grains in nine environments[J]. Theoretical & Applied Genetics, 2016, 129(1): 141-153. |
[44] | XIE Y, WANG Y, ZONG C, et al. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells[J]. Plant Journal for Cell & Molecular Biology, 2010, 64(5): 812-824. |
[45] |
HAN X, WANG Y, LIU X, et al. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice[J]. Journal of Experimental Botany, 2012, 63(1): 121-130.
PMID |
[46] | LI X J, ZHANG Y F, HOU M, et al. Small kernel1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa)[J]. The Plant Journal, 2014, 79(5):797-809. |
[47] | WANG X, ZHOU W, LU Z, et al. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice[J]. Plant Science An International Journal of Experimental Plant Biology, 2015, 239:200-208. |
[48] | RYO M, MAEKAWA M, KUSANO M, et al. Amyloplast-localized substandard starch grain4 protein influences the size of starch grains in rice endosperm[J]. Plant Physiology, 2013, 164(2): 623-636. |
[49] | HARMOKO R, YOO J Y, KO K S, et al. N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa)[J]. The New Phytologist, 2016, 212(1): 108-122. |
[50] | WANG E, WANG J, ZHU X, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics, 2008, 40(11): 1 370-1 374. |
[51] | BAZRKAR-KHATIBANI L, FAKHERI B A, HOSSEINI-CHALESHTORI M, et al. Genetic mapping and validation of quantitative trait loci (QTL) for the grain appearance and quality traits in rice (Oryza sativa L.) by using recombinant inbred line (RIL) population[J]. International Journal of Genomics, 2019: 3 160 275. |
[52] | QIU X, PANG Y, YUAN Z, et al. Genome-wide association study of grain appearance and milling quality in a worldwide collection of Indica rice germplasm[J]. PLOS One, 2015, 10(12): e0145577. |
[53] | DONG Y, TSUZUKI E, LIN D, et al. Molecular genetic mapping of quantitative trait loci for milling quality in rice (Oryza sativa L.)[J]. Journal of Cereal Science, 2004, 40(2): 109-114. |
[54] | REN D, RAO Y, HUANG L, et al. Fine mapping identifies a new QTL for brown rice rate in rice (Oryza sativa L.)[J]. Rice, 2016, 9(1): 1-10. |
[55] | CHEN J, ZHU J. Genetic effects and genotype × environment interactions for cooking quality traits in indica-japonica crosses of rice (Oryza sativa L.)[J]. Euphytica, 1999, 109(1): 9-15. |
[56] |
LANCERAS J C, HUANG Z L, NAIVIKUL O, et al. Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105)[J]. DNA Research, 2000, 7(2): 93-101.
PMID |
[57] | BAO J S, WU Y R, HU B, et al. QTL for rice grain quality based on a DH population derived from parents with similar apparent amylose content[J]. Euphytica, 2002, 128(3): 317-324. |
[58] | ALUKO G, MARTINEZ C, TOHME J, et al. QTL mapping of grain quality traits from the interspecific cross Oryza sativa x O. glaberrima[J]. Theoretical & Applied Genetics, 2004, 109(3): 630-639. |
[59] |
LI J M, XIAO J H, GRANDILLO S, et al. QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice[J]. Genome, 2004, 47(4): 697.
PMID |
[60] | TAKEUCHI Y, NONOUE Y, EBITANI T, et al. QTL detection for eating quality including glossiness, stickiness, taste and hardness of cooked rice[J]. Breeding Science, 2007, 57(3): 231-342. |
[61] | ZHENG X, WU J G, LOU X Y, et al. The QTL analysis on maternal and endosperm genome and their environmental interactions for characters of cooking quality in rice (Oryza sativa L.)[J]. Theoretical & Applied Genetics, 2008, 116(3): 335-342. |
[62] | LAPITAN V C, REDONA E D, ABE T, et al. Mapping of quantitative trait loci using a doubled-haploid population from the cross of indica and japonica cultivars of rice[J]. Crop Science, 2009, 49(5): 1 620-1 628. |
[63] | SABOURI H. QTL detection of rice grain quality traits by microsatellite markers using an indica rice (Oryza sativa L.) combination[J]. Journal of Genetics, 2009, 88(1): 81. |
[64] | KWON S W, CHO Y C, LEE J H, et al. Identification of quantitative trait loci associated with rice eating quality traits using a population of recombinant inbred lines derived from a cross between two temperate japonica cultivars[J]. Molecules & Cells, 2011, 31(5): 437-445. |
[65] | LIU X, WAN X, MA X, et al. Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eig[J]. Genome, 2011, 54(1): 64-80. |
[66] | SABOURI A, RABIEI B, TOORCHI M, et al. Mapping quantitative trait loci (QTL) associated with cooking quality in rice (Oryza sativa L.)[J]. Australian Journal of Crop Science, 2012, 6(5): 808-814. |
[67] | YACOUBA N T, YU B, GAO G, et al. QTL analysis of eating quality and cooking process of rice using a new RIL population derived from a cross between Minghui 63 and Khao Dawk Mali105[J]. Australian Journal of Crop Science, 2013, 7(13): 2 036-2 047. |
[68] | LEE G H, YUN B W, KIM K M. Analysis of QTLs associated with the rice quality related gene by double haploid populations[J]. International Journal of Genomics, 2014, 2014(4): 781-832. |
[69] | YUN B W, KIM M G, HANDOYO T, et al. Analysis of rice grain quality-associated quantitative trait loci by using genetic mapping[J]. American Journal of Plant Sciences, 2014, 5(9): 1125. |
[70] | YUN Y T, CHUNG C T, LEE Y J, et al. QTL mapping of grain quality traits using introgression lines carrying Oryza rufipogon chromosome segments in japonica rice[J]. Rice, 2016, 9(1): 62. |
[71] | 张昌泉, 赵冬生, 李钱峰, 等. 稻米品质性状基因的克隆与功能研究进展[J]. 中国农业科学, 2016, 49(22):4267-4 283. |
[72] | 杨平, 陈春莲, 姚晓云, 等. 利用基因编辑技术改良水稻直链淀粉含量与香味[J]. 分子植物育种, 2020, 18(3): 915-923. |
[73] | 吴长明, 孙传清, 陈亮, 等水稻直链淀粉含量与籼粳分化度的QTL及其相互关系研究[J]. 中国农业大学学报, 2000, 5(5):6-11. |
[74] | 翁建峰, 万向元, 吴秀菊, 等. 利用CSSL群体研究稻米AC和PC相关QTL表达稳定性[J]. 作物学报, 2006, 32(1):14-19. |
[75] | 黄祖六, 谭学林, TRAGOONRUNG S, 等. 稻米直链淀粉含量基因座位的分子标记定位[J]. 作物学报, 2000, 26(6):777-782. |
[76] | HE P, LI S G, QIAN Q, et al. Genetic analysis of rice grain quality[J]. Theoretical & Applied Genetics, 1999, 98(3-4): 502-508. |
[77] | 朱昌兰, 江玲, 张文伟, 等. 稻米直链淀粉含量和胶稠度对高温耐性的QTL分析[J]. 中国水稻科学, 2006, 20(3):248-252. |
[78] | SEPTININGSIH E M, TRIJATMIKO K R, MOELJOPAWIRO S, et al. Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon[J]. Theoretical & Applied Genetics, 2003, 107(8):1433-1 441. |
[79] | BRUNO E, CHOI Y S, CHUNG I K, et al. QTLs and analysis of the candidate gene for amylose, protein, and moisture content in rice (Oryza sativa L.)[J]. Biotechnology, 2017, 7(1): 40. |
[80] | LI J, ZHANG W, WU H, et al. Fine mapping of stable QTLs related to eating quality in rice (Oryza sativa L.) by CSSLs harboring small target chromosomal segments[J]. Breeding Science, 2011, 61(4): 338-346. |
[81] | WAN X Y, WAN J M, SU C C, et al. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines[J]. Theoretical & Applied Genetics, 2004, 110(1): 71-79. |
[82] | TAN Y F, LI J X, YU S B, et al. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63[J]. Theoretical & Applied Genetics, 1999, 99(3-4): 642-648. |
[83] | FAN C C, YU X Q, XING Y Z, et al. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population[J]. Theoretical and Applied Genetics, 2005, 110(8): 1 445-1 452. |
[84] | WANG Z Y, ZHENG F Q, SHEN G Z, et al. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene[J]. Plant Journal, 2010, 7(4): 613-622. |
[85] | 汪秉琨, 张慧, 洪汝科, 等. CRISPR/Cas9系统编辑水稻Wx基因[J]. 中国水稻科学, 2018, 32(1):35-42. |
[86] | INUKAI, TSUYOSHI, SAKO, et al. Analysis of intragenic recombination at wx in rice: correlation between the molecular and genetic maps within the locus[J]. Genome, 2000, 43(4): 589-596. |
[87] | BERGMAN C J, DELGADO J T, MCCLUNG A M, et al. An improved method for using a microsatellite in the rice waxy gene to determine amylose glass[J]. Cereal Chemistry, 2001, 78(3): 257-260. |
[88] | SATO, SUZUKI, OKUNO, et al. Genetic analysis of low-amylose content in a rice variety,‘Milky Queen’[J]. Breeding Research, 2000, 2(1): 1-23. |
[89] | LARKIN P D, PARK W D. Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.)[J]. Molecular Breeding, 2003, 12(4): 335-339. |
[90] | HIROYUKI S, YASUHIRO S, MAKOTO S, et al. Molecular characterization of Wx-mq, a novel mutant gene for low-amylose content in endosperm of rice (Oryza sativa L.)[J]. Breeding Science, 2002, 52(2): 131-135. |
[91] | MIKAMI I, UWATOKO N, IKEDA Y, et al. Allelic diversification at the wx locus in landraces of Asian rice[J]. Theoretical & Applied Genetics, 2008, 116(7): 979-89. |
[92] | 包劲松, 夏英武. 稻米淀粉RVA谱的基因型×环境互作效应分析[J]. 中国农业科学, 2001, 34(2):123-127. |
[93] | YAN B, YACOUBA N T, CHEN J, et al. Analysis of minor quantitative trait loci for eating and cooking quality traits in rice using a recombinant inbred line population derived from two indica cultivars with similar amylose content[J]. Molecular Breeding, 2014, 34(4): 2 151-2 163. |
[94] | YAN C J, TIAN Z X, FANG Y W, et al. Genetic analysis of starch paste viscosity parameters in glutinous rice (Oryza sativa L.)[J]. Theoretical & Applied Genetics, 2011, 122(1): 63-76. |
[95] | XU F, ZHANG G, TONG C, et al. Association mapping of starch physicochemical properties with starch biosynthesizing genes in waxy rice (Oryza sativa L.)[J]. Journal of Agricultural & Food Chemistry, 2013, 61(42): 10 110-10 117. |
[96] | 石春海, 朱军. 籼稻稻米蒸煮品质的种子和母体遗传效应分析[J]. 中国水稻科学, 1994, 8(3):129-134. |
[97] | ZHANG A, GAO Y, LI Y, et al. Genetic analysis for cooking and eating quality of super rice and fine mapping of a novel locus qGC10 for gel consistency[J]. Frontiers in Plant Science, 2020, 24(11): 342. |
[98] | WANG X, PANG Y, ZHANG J, et al. Genome-wide and gene-based association mapping for rice eating and cooking characteristics and protein content[J]. Scientific Reports, 2017, 7(1): 17 203. |
[99] | UMEMOTO T, YANO M, SATOH H, et al. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties[J]. Theoretical & Applied Genetics, 2002, 104(1): 1-8. |
[100] | XU F, BAO J, HE Q, et al. Genome-wide association study of eating and cooking qualities in different subpopulations of rice (Oryza sativa L.)[J]. BMC Genomics, 2016, 17(1): 663. |
[101] | CHENG L, XU Q, ZHENG T, et al. Identification of stably expressed quantitative trait loci for grain yield and protein content using recombinant inbred line and reciprocal introgression line populations in rice[J]. Crop Science, 2013, 53(4): 1 437-1 446. |
[102] | WU Y B, LI G, ZHU Y J, et al. Genome-wide identification of QTLs for grain protein content based on genotyping-by-resequencing and verification of qGPC1-1 in rice[J]. International Journal of Molecular Sciences, 2020, 21(2): 408. |
[103] | YANG Y, GUO M, LI R, et al. Identification of quantitative trait loci responsible for rice grain protein content using chromosome segment substitution lines and fine mapping of qPC-1 in rice ( Oryza sativa L.)[J]. Molecular Breeding, 2015, 35(6): 1-9. |
[104] | PARK S G, PARK H S, BAEK M K, et al. Improving the glossiness of cooked rice, an important component of visual rice grain quality[J]. Rice, 2019, 12(1): 87. |
[105] | 王小雷, 刘杨, 孙晓棠, 等. 不同环境下稻米品质性状QTL的检测及稳定性分析[J]. 中国水稻科学, 2020, 34(1):17-27. |
[106] | YANG Y H, GUO M, SUN S Y, et al. Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications, 2019, 10(1): 1 949. |
[107] | 沈兰, 李健, 付亚萍, 等. 利用CRISPR/Cas9系统定向改良水稻粒长和穗粒数性状[J]. 中国水稻科学, 2017, 31(3):223-231. |
[108] | 周优, 林冬枝, 董彦君. CRISPR/Cas9技术定点编辑水稻谷蛋白基因GluA[J]. 上海农业学报, 2019, 35(1):22-28. |
[109] | 王慧, 张从合, 陈金节, 等. 稻米品质性状影响因素及相关基因研究进展[J]. 中国稻米, 2018, 24(4):16-21. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 胡江博, 任正鹏, 丁翔, 王朝全, 冯阳, 王笑见, 张翔, 胥南飞. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19. |
[3] | 王云翔, 咸云宇, 赵灿, 王维领, 霍中洋. 缓控释氮肥施用技术在水稻上应用研究进展与展望[J]. 中国稻米, 2023, 29(4): 20-26. |
[4] | 李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44. |
[5] | 薛莲, 段圣省, 郑兴飞, 殷得所, 董华林, 胡建林, 王红波, 查中萍, 郭英, 曹鹏, 徐得泽. 湖北省水稻生产发展现状及对策建议[J]. 中国稻米, 2023, 29(4): 45-47. |
[6] | 王昕, 刘炜, 马洪文, 贺奇, 冯伟东, 张益民, 李虹, 殷延勃. 宁夏优质稻育种历程、问题及展望[J]. 中国稻米, 2023, 29(4): 48-52. |
[7] | 孙志广, 刘艳, 李景芳, 周振玲, 邢运高, 徐波, 周群, 王德荣, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻萌发耐淹性鉴定评价方法研究及种质资源筛选[J]. 中国稻米, 2023, 29(4): 53-58. |
[8] | 王兴为, 王志成. 秸秆还田与深施氮肥对水稻叶片生理特征、氮素利用及产量的影响[J]. 中国稻米, 2023, 29(4): 59-65. |
[9] | 赫兵, 李超, 严永峰, 刘月月, 赫靖淇, 于天华, 王帅, 陈殿元, 严光彬. 水稻秸秆秋季水耙浆还田对土壤及水稻性状的影响[J]. 中国稻米, 2023, 29(4): 66-71. |
[10] | 董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析[J]. 中国稻米, 2023, 29(4): 84-89. |
[11] | 吴涛, 邓宏中, 赵迎曦, 杨琛, 郭昱, 赵有权, 谢志梅, 张立阳, 杨远柱. 隆平高科水稻绿色通道2016—2021年审定品种分析[J]. 中国稻米, 2023, 29(4): 90-94. |
[12] | 邵泽毅, 谭旭生, 伍斌, 管恩相. 稻田小龙虾轮捕轮放寄养技术浅析[J]. 中国稻米, 2023, 29(4): 98-100. |
[13] | 黄日伟, 廖春良, 梁月宽, 杨绍意, 尚子帅, 姚云峰. 华浙优261在广西不同海拔作早中晚稻种植表现及高产栽培技术[J]. 中国稻米, 2023, 29(4): 106-107. |
[14] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
[15] | 严如玉, 甘国渝, 赵希梅, 殷大聪, 李燕丽, 金慧芳, 朱海, 李继福. 我国水稻优势产区生产格局及施肥现状研究[J]. 中国稻米, 2023, 29(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||