中国稻米 ›› 2023, Vol. 29 ›› Issue (1): 35-43.DOI: 10.3969/j.issn.1006-8082.2023.01.006
收稿日期:
2022-07-20
出版日期:
2023-01-20
发布日期:
2023-01-17
通讯作者:
张瑞英
作者简介:
buyijingjing@163.com
基金资助:
WANG Jing(), DAI Changjun, WANG Cuiling, ZHANG Ruiying()
Received:
2022-07-20
Online:
2023-01-20
Published:
2023-01-17
Contact:
ZHANG Ruiying
摘要:
稻米食味品质是决定消费者选择和市场流通最重要的因素之一。稻米食味品质主要是由淀粉(少量蛋白质和脂肪)在水和温度共同作用下经过一段时间物理和化学变化形成独特的质构和滋味。本文介绍了稻米食味品质评价的发展历程,综述了淀粉组成结构、淀粉与其他成分互作、淀粉生物合成与分解对食味品质的影响,以及利用分子生物学手段对稻米食味品质改良的研究进展,以期为稻米食味品质提升、水稻品质育种提供参考。
中图分类号:
王晶, 戴常军, 王翠玲, 张瑞英. 稻米淀粉影响食味品质机理的研究进展[J]. 中国稻米, 2023, 29(1): 35-43.
WANG Jing, DAI Changjun, WANG Cuiling, ZHANG Ruiying. Progress on the Mechanism of Rice Starch Affecting the Eating Quality[J]. China Rice, 2023, 29(1): 35-43.
[1] | BAO J S. Rice: Eating quality[M]// Encyclopedia of Food Grains: Second Edition. UK: Science Direct, 2016: 166-175. |
[2] | 张欣, 施利利, 丁得亮, 等. 10个水稻品种(组合)食味特性的研究[J]. 安徽农业科学, 2010(3): 1 177-1 178. |
[3] | 王婧, 严伟, 丁华, 等. 国内外大米蒸煮食味品质标准分析[J]. 湖北农业科学, 2016, 55(23):6238-6 243. |
[4] | CHAMPAGNE E T, BETT-GARBER K L, FITZGERALD M A, et al. Important sensory properties differentiating premium rice varieties[J]. Rice, 2010, 3(4): 270-281. |
[5] |
LI H, PRAKASH S, NICHOLSON T M, et al. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains[J]. Food Chemistry, 2016, 196: 702-711.
PMID |
[6] | AHMED F, ABRO T F, KABIR M S, et al. Rice quality:biochemical composition, eating quality, and cooking quality[M]. The Future of Rice Demand:Quality Beyond Productivity. Switzerland: Springer, 2020: 8-12. |
[7] | ZHU D, FANG C, QIAN Z, et al. Differences in starch structure, physicochemical properties and texture characteristics in superior and inferior grains of rice varieties with different amylose contents[J]. Food Hydrocolloids, 2020, 110: 1-9. |
[8] | CAGAMPANG G B, PEREZ C M, JULIANO B O, et al. A gel consistency test for eating quality of rice[J]. Journal of the Science of Food Agriculture, 2010, 24(12): 1 589-1 594. |
[9] | ZHANG H, ZHU Y, FAN Y, et al. Identification and verification of quantitative trait loci for eating and cooking quality of rice (Oryza sativa)[J]. Plant Breeding, 2019, 138(5): 568-576. |
[10] | CHEN H, CHEN D, HE L, et al. Correlation of taste values with chemical compositions and rapid visco analyser profiles of 36 indica rice (Oryza sativa L.) varieties[J]. Food Chemistry, 2021, 349: 1-9. |
[11] | MAO T, ZHANG Z, NI S J, et al. Assisted selection of eating quality progeny of indica (O.sativa L. indica) and japonica (O. Sativa L. japonica) hybrids using rice starch properties[J]. Genetic Resources and Crop Evolution, 2021, 68: 411-420. |
[12] | JULIANO B O, TUANO A P. Gross structure and composition of the rice grain[M]// Rice Chemistry and Technology: 4th ed. AACC International Press, 2019: 31-53. |
[13] | OLIVEIRA A C D, PEGORARO C, VIANA V E. Oryza species and rice grain quality[M]// The Future of Rice Demand:Quality Beyond Productivity. Switzerland: Springer, 2020: 318-321. |
[14] | GOUS P W, FOX G P. Review: amylopectin synthesis and hydrolysis-understanding isoamylase and limit dextrinase and their impact on starch structure on barley (Hordeum vulgare) quality[J]. Trends Food Science & Technology, 2017, 62: 23-32. |
[15] | HIZUKURI S. Polymodal distribution of the chain lengths of amylopectins, and its significance[J]. Carbohydrate Research, 1986, 147(2): 342-347. |
[16] | HANASHIRO I. Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice[J]. Plant Cell Physiology, 2008, 49(6): 925-933. |
[17] | ERIC B. Understanding starch structure: Recent progress[J]. Agronomy, 2017, 7(3): 1-29. |
[18] | HERRERA M P, VASANTHAN T, HOOVER R. Characterization of maize starch nanoparticles prepared by acid hydrolysis[J]. Cereal Chemistry, 2016, 93(3): 323-330. |
[19] | PENG Y, MAO B G, ZHANG C Q, et al. Influence of physicochemical properties and starch fine structure on the eating quality of hybrid rice with similar apparent amylose content[J]. Food Chemistry, 2021, 5: 1-8. |
[20] | NAKAMURA Y. Rice starch biotechnology: Rice endosperm as a model of cereal endosperms[J]. Starch-Starke, 2017, 70(1-2): 1-20. |
[21] | KATO K, SUZUKI Y, HOSAKA Y, et al. Effect of high temperature on starch biosynthetic enzymes and starch structure in japonica rice cultivar ‘Akitakomachi’ (Oryza sativa L.) endosperm and palatability of cooked rice[J]. Journal of Cereal Science, 2019, 87: 209-214. |
[22] | LI X, TAO Q, MIAO J, et al. Evaluation of differential qPE9-1/DEP1 protein domains in rice grain length and weight variation[J]. Rice, 2019, 12(1): 1-10. |
[23] | BULEON A, COTTE M, PUTAUX J L, et al. Tracking sulfur and phosphorus within single starch granules using synchrotron X-ray microfluorescence mapping[J]. Biochimica et Biophysica Acta-General Subjects, 2014, 1840(1): 113-119. |
[24] | MARTIN M, FITZGERALD M A. Proteins in rice grains influence cooking properties[J]. Journal of Cereal Science, 2002, 36(3): 285-294. |
[25] | GONG R, HUANG D, CHEN Y, et al. Comparative metabolomics analysis reveals the variations of eating quality among three high-quality rice cultivars[J]. Molecular Breeding, 2020, 40: 1-14. |
[26] | YUN B W, KIM M G, HANDOYO T, et al. Analysis of rice grain quality-associated quantitative trait loci by using genetic mapping[J]. American Journal of Plant Science, 2014, 5(9): 1 125-1 132. |
[27] |
YANG Y H, DAI L, XIA H C, et al. Protein profile of rice (Oryza sativa) seeds[J]. Genetics and Molecular Biology, 2013, 36(1): 87-92.
PMID |
[28] | GALLAND M, HE D, LOUNIFI I, et al. An integrated “multi-omics” comparison of embryo and endosperm tissue-specific features and their impact on rice seed quality[J]. Frontiers in Plant Science, 2017, 8: 1-23. |
[29] | SHE K C. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. Plant Cell, 2010, 22: 3 280-3 294. |
[30] | 张向民, 周瑞芳. 稻米中的脂类[J]. 郑州粮食学院学报, 1997, 18(2):44-50. |
[31] | GROSCH W, SCHIEBERLE P. Flavor of cereal products—A review[J]. Cereal Chemistry, 1997, 74(2): 91-97. |
[32] | MASOULEH A K, WATERS D L E, Reinke R F, et al. A high-throughput assay for rapid and simultaneous analysis of perfect markers for important quality and agronomic traits in rice using multiplexed MALDI-TOF mass spectrometry[J]. Plant Biotechnology Journal, 2010, 7(4): 355-363. |
[33] | WANG K, HASJIM J, WU A C, et al. Roles of GBSSI and SSIIa in determining amylose fine structure[J]. Carbohydrate Polymers, 2015, 127: 264-274. |
[34] | NAKAMURA Y, SAKURAI A, INABA Y, et al. The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes[J]. Starch-Starke, 2002, 54(3-4): 117-131. |
[35] | 杜晓霞. 龙粳18优质食味形成的淀粉理化基础与遗传生理特征[D]. 杭州: 浙江大学, 2019:9-10. |
[36] | COOK F R, FAHY B, TRAFFORD K. A rice mutant lacking a large subunit of ADP-glucose pyrophosphorylase has drastically reduced starch content in the culm but normal plant morphology and yield[J]. Functional Plant Biology, 2012, 39(12): 1 068-1 078. |
[37] |
NAKAMURA Y, AIHARA S, CROFTS N, et al. In vitro studies of enzymatic properties of starch synthases and interactions between starch synthase I and starch branching enzymes from rice[J]. Plant Science, 2014, 224: 1-8.
PMID |
[38] | TOYOSAWA Y, KAWAGOE Y, MATSUSHIMA R, et al. Deficiency of starch synthase IIIa and IVb alters starch granule morphology from polyhedral to spherical in rice endosperm[J]. Plant Physiology, 2016, 170(3): 1 255-1 270. |
[39] | YANG G, CHEN S, CHEN L, et al. Development and utilization of functional KASP markers to improve rice eating and cooking quality through MAS breeding[J]. Euphytica, 2019, 215: 1-12. |
[40] | NAKAMURA Y, UTSUMI Y, SAWADA T, et al. Characterization of the reactions of starch branching enzymes from rice endosperm[J]. Plant Cell Physiology, 2010, 51(5): 776-794. |
[41] | NAKAMURA Y, KUBO A, SHIMAMUNE T, et al. Correlation between activities of starch debranching enzyme and α‐polyglucan structure in endosperms of sugary-1 mutants of rice[J]. Plant Journal, 2010, 12(1): 143-153. |
[42] | TAIKI K, SATOSHI S, YOSHINORI U, et al. Comparison of chain-length preferences and glucan specificities of isoamylase-type α-glucan debranching enzymes from rice, cyanobacteria, and bacteria[J]. PLoS ONE, 2016, 11(6): 1-21. |
[43] |
UTSUMI Y, UTSYMI C, SAWADA T, et al. Functional diversity of isoamylase oligomers: The ISA1 homo-oligomer is essential for amylopectin biosynthesis in rice endosperm[J]. Plant Physiology, 2011, 156(1): 61-77.
PMID |
[44] | TETLOW I J. Starch biosynthesis in developing seeds[J]. Seed Science Research, 2011, 21(1): 5-32. |
[45] |
OKITA T W. Is there an alternative pathway for starch synthesis?[J]. Plant Physiology, 1992, 100(2): 560-564.
PMID |
[46] | GHOSH H P, PREISS J. Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts[J]. Journal of Biological Chemistry, 1966, 241(19): 4 491-4 504. |
[47] |
AKIHIRO T, MIZUNO K, FUJIMDRA T, et al. Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA[J]. Plant and Cell Physiology, 2005, 46(6): 937-946.
PMID |
[48] | TUNCEL A, KAWAGUCHI J, IHARA Y, et al. The rice endosperm ADP-Glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme[J]. Plant Cell Physiology, 55(6): 1169-1183. |
[49] | HIROSE T, TERAO T. A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.)[J]. Planta, 2004, 220(1): 9-16. |
[50] | UMEMOTO T, YANO M, SATOH H, et al. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties[J]. Theoretical and Applied Genetics, 2002, 104(1): 1-8. |
[51] | NAKAMURA Y, FRANCISCO P B, HOSAKA Y, et al. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties[J]. Plant Molecular Biology, 2005, 58(2): 213-227. |
[52] | BAO J. Toward understanding the genetic and molecular bases of the eating and cooking qualities of rice[J]. Cereal Foods World, 2012, 57(4): 148-156. |
[53] | NAKAMURA Y. Starch[M]. Tokyo: Springer, 2015: 3-40. |
[54] | WANG W, WEI X, JIAO G, et al. GBSS‐BINDING PROTEIN, encoding a CBM48 domain‐containing protein, affects rice quality and yield[J]. Journal of Integrative Plant Biology, 2019, 62(7): 948-966. |
[55] | TRAN N A, DAYGON V D, RESURRECCION A P, et al. A single nucleotide polymorphism in the Waxy gene explains a significant component of gel consistency[J]. Theoretical and Applied Genetics, 2011(123): 519-525. |
[56] |
LANCERAS J C, HUANG Z L, NAIVIKUL O, et al. Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105)[J]. DNA Research, 2000, 7(2): 93-101.
PMID |
[57] | NIELSEN T H, BAUSGAARD L, BLENNOW A. Intermediary glucan structures formed during starch granule biosynthesis are enriched in short side chains, a dynamic pulse labeling approach[J]. Journal of Biological Chemistry, 2002, 277(23): 20 249-20 255. |
[58] | WU A C, MORELL M K, GILBERT R G. A parameterized model of amylopectin synthesis provides key insights into the synthesis of granular starch[J]. PloS ONE, 2013, 8(6): e65768. |
[59] | TOMLINSON K, DENYER K. Starch synthesis in cereal grains[J]. Advances in Botanical Research, 2003, 40(5): 1-61. |
[60] | TIAN Z T, QIAN Q, LIU Q Q, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Science of the United States of America, 2009, 106(51): 21 760-21 765. |
[61] |
TETLOW I J, EMES M J. A review of starch-branching enzymes and their role in amylopectin biosynthesis[J]. IUBMB Life, 2014, 66(8): 546-558.
PMID |
[62] | SUN Y W, JIAO G A, ZHANG X, et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes[J]. Frontiers in Plant Science, 2017, 8:1-15. |
[63] | FIAZ S, AHMAD S, NOOR M, et al. Applications of the CRISPR/Cas9 system for rice grain quality improvement: Perspectives and opportunities[J]. International Journal of Molecular Sciences, 2019, 20(4): 1-18. |
[64] | KAWAGOE Y. Rice debranching enzyme isoamylase 3 facilitates starch metabolism and affects plastid morphogenesis[J]. Plant Cell Physiology, 2011, 52(6): 1 068-1 082. |
[65] | CHAO S F, CAI Y C, FENG B B, et al. Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation[J]. Rice Science, 2019, 2: 77-87. |
[66] | WANG J, CHEN Z, ZHANG Q, et al. The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis[J]. Plant Physiology, 2020, 184: 1 775-1 791. |
[67] | WANG J C, XU H, ZHU Y, et al. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. Journal of Experimental Botany, 2013, 11: 3 453-3 466. |
[68] | FU F F, XUE H W. Coexpression analysis identifies rice starch regulator 1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator[J]. Plant Physiology, 2010, 154(2): 927-938. |
[69] | ZHANG C, YANG Y, CHEN S, et al. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 2020, 63(5): 889-901. |
[70] | MA X L, ZHANG Q Y, ZHU Q L. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8): 1 274-1 284. |
[71] | ZHANG J S, ZHANG H, BOTELLA J R. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties[J]. Journal of Integrative Plant Biology, 2018, 60(5): 369-375. |
[72] | XU Y, LIN Q, LI X, et al. Fine-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2020, 19(1): 11-13. |
[73] | HUANG L, LI Q, ZHAN C, et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18(11): 2 164-2 166. |
[74] | LAU W C P, RAFII M Y, ISMAIL M R, et al. Development of advanced fragrant rice lines from MR269×Basmati 370 through marker-assisted backcrossing[J]. Euphytica, 2017, 213(1): 1-15. |
[75] |
HAHNE G, TOMLINSON L, NOGUE F. Precision genetic engineering tools for next-generation plant breeding[J]. Plant Cell Reports, 2019, 38: 435-436.
PMID |
[76] | ANACLETO R, CUEVAS R P, JIMENEZ R et al. Prospects of breeding high-quality rice using post-genomic tools[J]. Theoretical and Applied Genetics, 2015, 128(8): 1 449-1 466. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
[3] | 王松, 张呈龙, 刘闯, 张小凡. 生物源土壤改良剂对水稻产量、抗性及稻米品质的影响[J]. 中国稻米, 2023, 29(3): 100-104. |
[4] | 陈雅慧, 杨星莲, 刘磊, 邵华, 曾勇军, 黄山, 潘晓华. 施用不同石灰类物质对双季优质稻产量和品质的影响[J]. 中国稻米, 2023, 29(3): 62-66. |
[5] | 徐春春, 纪龙, 陈中督, 方福平. 2022年我国水稻产业发展分析及2023年展望[J]. 中国稻米, 2023, 29(2): 1-4. |
[6] | 朱玮强, 张贇, 徐志刚. 产业振兴背景下的江苏稻米品牌建设:历史经验与战略选择[J]. 中国稻米, 2023, 29(2): 53-58. |
[7] | 刘猷红, 唐傲, 张喜娟, 董文军, 刘凯, 王文龙, 徐英哲, 孟英, 来永才. 籼型细胞质对粳稻杂交后代F1稻米品质的影响[J]. 中国稻米, 2023, 29(2): 59-64. |
[8] | 王旭辉, 何贤彪, 欧阳由男, 徐强强, 虞鹏程, 齐文, 蒋海凌, 朱德峰, 秦叶波. 东北早粳稻在浙东南地区产量、品质及生育特性表现[J]. 中国稻米, 2023, 29(2): 65-70. |
[9] | 周翌城, 郭哈伦, 陆尧, 徐强, 窦志, 高辉. 胚乳蛋白质对稻米品质影响的研究进展[J]. 中国稻米, 2023, 29(1): 27-34. |
[10] | 陈燕红, 胡标林, 张帆涛. 稻米品质遗传分析研究现状[J]. 中国稻米, 2023, 29(1): 44-54. |
[11] | 纪国成, 厉宝仙, 秦叶波, 朱大伟, 张慧, 许剑锋, 李婧, 章林平. “浙江好稻米”评价推荐的办法与成效[J]. 中国稻米, 2023, 29(1): 82-84. |
[12] | 夏陈钰, 倪嘉颢, 朱毅萱, 左新磊, 余恩唯, 丛舒敏, 薛建涛, 胡雅杰. 稻米食味品质对结实期温度的响应研究进展[J]. 中国稻米, 2022, 28(6): 12-15. |
[13] | 刘海天, 王峰, 王强, 虞轶俊, 马军伟. 水稻弱势籽粒淀粉形成对稻米品质影响研究进展[J]. 中国稻米, 2022, 28(6): 16-20. |
[14] | 王丰. 华南优质杂交水稻品种选育与发展[J]. 中国稻米, 2022, 28(5): 107-116. |
[15] | 胡贤巧, 卢林, 张卫星, 牟仁祥, 陈铭学. 食用稻品质评价标准发展及其对稻米品质改善的影响[J]. 中国稻米, 2022, 28(5): 133-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||