中国稻米 ›› 2023, Vol. 29 ›› Issue (1): 27-34.DOI: 10.3969/j.issn.1006-8082.2023.01.005
收稿日期:
2022-07-10
出版日期:
2023-01-20
发布日期:
2023-01-17
通讯作者:
窦志
作者简介:
zhouyicheng98@126.com
基金资助:
ZHOU Yicheng(), GUO Halun, LU Yao, XU Qiang, DOU Zhi(), GAO Hui
Received:
2022-07-10
Online:
2023-01-20
Published:
2023-01-17
Contact:
DOU Zhi
摘要:
蛋白质是稻米胚乳中仅次于淀粉的第二大贮藏物质,蛋白质含量、组分、形态以及分布特征对稻米品质均具有重要影响。本文梳理了胚乳蛋白质与稻米外观品质、加工品质、营养品质和蒸煮食味品质关系的研究进展,并对未来研究方向提出了展望。结果可为进一步解析胚乳蛋白质在稻米品质形成中的作用和稻米品质改良提供参考。
中图分类号:
周翌城, 郭哈伦, 陆尧, 徐强, 窦志, 高辉. 胚乳蛋白质对稻米品质影响的研究进展[J]. 中国稻米, 2023, 29(1): 27-34.
ZHOU Yicheng, GUO Halun, LU Yao, XU Qiang, DOU Zhi, GAO Hui. Research Progress for the Effect of Endosperm Protein on Rice Quality[J]. China Rice, 2023, 29(1): 27-34.
[1] |
DUAN M, SUN S S M. Profiling the expression of genes controlling rice grain quality[J]. Plant Molecular Biology, 2005, 59(1): 165-178.
PMID |
[2] | 黄发松, 孙宗修, 胡培松, 等. 食用稻米品质形成研究的现状与展望[J]. 中国水稻科学, 1998, 12(3):172-176. |
[3] | 石吕, 张新月, 孙惠艳, 等. 不同类型水稻品种稻米蛋白质含量与蒸煮食味品质的关系及后期氮肥的效应[J]. 中国水稻科学, 2019, 33(6):541-552. |
[4] | SHEWRY P R, HALFORD N G. Cereal seed storage proteins: structures, properties and role in grain utilization[J]. Journal of Experimental Botany, 2002, 370: 947-958. |
[5] | 邵雅芳. 稻米的营养功能特点[J]. 中国稻米, 2020, 26(6):1-11. |
[6] | 石彦国, 贺殷媛, 陈凤莲, 等. 大米蛋白与蒸煮品质相关性研究进展[J]. 食品科学技术学报, 2020, 38(4):1-9. |
[7] | MUENCH D G, OGAWA M, OKITA T W. The Prolamins of Rice[M]. Springer Netherlands, 1999, doi: https://doi.org/10.1007/978-94-011-4431-5_5. |
[8] | 谢黎虹, 陈能, 段彬伍, 等. 稻米中蛋白质对淀粉RVA特征谱的影响[J]. 中国水稻科学, 2006, 20(5):524-528. |
[9] | YANG Y, GUO M, SUN S, et al. Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications, 2019, 10(1): 1-12. |
[10] | SHEWRY P R, LOOKHART G L. Wheat Gluten Proteins[M]. England: CAB Direct, 2003. |
[11] | 吴殿星, 舒小丽. 稻米蛋白质的研究与利用[M]. 北京: 中国农业出版社, 2008. |
[12] | ZHAO M, LIN Y, CHEN H. Improving nutritional quality of rice for human health[J]. Theoretical and Applied Genetics, 2020, 133(5): 1 397-1 413. |
[13] | 王忠. 水稻的开花与结实(水稻生殖器官发育图谱)[M]. 北京: 科学出版社, 2015. |
[14] | OHDAIRA Y, MASUMURA T, NAKATSUKA N, et al. Analysis of storage protein distribution in rice grain of seed-protein mutant cultivars by immunofluorescence microscopy[J]. Plant Production Science, 2011, 14(3): 219-228. |
[15] | KAWAKATSU T, TAKAIWA F. Rice proteins and essential amino acids[M]// BAO J S. Rice Chemistry and Technology(Fourth Edition). St. Paul, MN, USA: AACC International Press, 2019: 109-130. |
[16] | SAITO Y, SHIGEMITSU T, YAMASAKI R, et al. Formation mechanism of the internal structure of type I protein bodies in rice endosperm: relationship between the localization of prolamin species and the expression of individual genes[J]. Plant Journal, 2012, 70(6): 1 043-1 055. |
[17] | KAWAKATSU T, HIROSE S, TAKAIWA Y F. Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation[J]. Plant Physiology, 2010, 154(4): 1 842-1 854. |
[18] |
FITZGERALD M A, MCCOUCH S R, HALL R D. Not just a grain of rice: the quest for quality[J]. Trends in Plant Science, 2009, 14(3): 133-139.
PMID |
[19] | QIAO J, LIU Z, DENG S, et al. Occurrence of perfect and imperfect grains of six japonica rice cultivars as affected by nitrogen fertilization[J]. Plant and Soil, 2011, 349(1): 191-202. |
[20] | 杨文钰, 屠乃美. 作物栽培学各论:南方本[M]. 北京: 中国农业出版社, 2011. |
[21] | LANNING S B, SIEBENMORGEN T J, COUNCE P A, et al. Extreme nighttime air temperatures in 2010 impact rice chalkiness and milling quality[J]. Field Crops Research, 2011, 124(1): 132-136. |
[22] |
SHI W J, MUTHURAJAN R, RAHMAN H, et al. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality[J]. New Phytologist, 2013, 197(3): 825-837.
PMID |
[23] | PATINDOL J, WANG Y J. Fine structures and physicochemical properties of starches from chalky and translucent rice kernels[J]. Journal of Agricultural and Food Chemistry, 2003, 51(9): 2 777- 2 784. |
[24] | CHENG F M, ZHONG L J, Wang F, et al. Differences in cooking and eating properties between chalky and translucent parts in rice grains[J]. Food Chemistry, 2005, 90( 1-2): 39-46. |
[25] | WAKAMATSU K I, SASAKI O, UEZONO I, et al. Effect of the amount of nitrogen application on occurrence of white-back kernels during ripening of rice under high-temperature conditions[J]. Japanese Journal of Crop Science, 2008, 77(4): 424-433. |
[26] | ZHOU L, LIANG S, PONCE K, et al. Factors affecting head rice yield and chalkiness in indica rice[J]. Field Crops Research, 2015, 172: 1-10. |
[27] | CHUN A, SONG J, KIM K J, et al. Quality of head and chalky rice and deterioration of eating quality by chalky rice[J]. Journal of Crop Science and Biotechnology, 2009, 12(4): 239-244. |
[28] | XI M, LIN Z, ZHANG X, et al. Endosperm structure of white-belly and white-core rice grains shown by scanning electron microscopy[J]. Plant Production Science, 2014, 17(4): 285-290. |
[29] | 刘奕. 稻米品质形成的淀粉理化基础与细胞化学特征[D]. 杭州: 浙江大学, 2006. |
[30] | LIN C J, LI C Y, LIN S K, et al. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.)[J]. Journal of Agricultural & Food Chemistry, 2014, 58(19): 10 545-10 552. |
[31] | LIN Z, ZHENG D, ZHANG X, et al. Chalky part differs in chemical composition from translucent part of japonica rice grains as revealed by a notched‐belly mutant with white‐belly[J]. Journal of the Science of Food & Agriculture, 2016, 96(11): 3 937-3 943. |
[32] | 王忠, 顾蕴洁, 陈刚, 等. 稻米的品质和影响因素[J]. 分子植物育种, 2003, 1(2):231-241. |
[33] | XI M, WU W, XU Y, et al. Grain chalkiness traits is affected by the synthesis and dynamic accumulation of the storage protein in rice[J]. Journal of the Science of Food and Agriculture, 2021, 101(14): 6 125-6 133. |
[34] |
XI M, WU W, XU Y, et al. iTRAQ-based quantitative proteomic analysis reveals the metabolic pathways of grain chalkiness in response to nitrogen topdressing in rice[J]. Plant Physiology and Biochemistry, 2020, 154: 622-635.
PMID |
[35] | LIN Z, ZHANG X, YANG X, et al. Proteomic analysis of proteins related to rice grain chalkiness using iTRAQ and a novel comparison system based on a notched-belly mutant with white-belly[J]. BMC Plant Biology, 2014, 14(1): 1-17. |
[36] | LI Y, FAN C, XING Y, et al. Erratum: Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(6): 657-657. |
[37] | TANG S, CHEN W, LIU W, et al. Open-field warming regulates the morphological structure, protein synthesis of grain and affects the appearance quality of rice[J]. Journal of Cereal Science, 2018, 84: 20-29. |
[38] | WADA H, HATAKEYAMA Y, ONDA Y, et al. Multiple strategies for heat adaptation to prevent chalkiness in the rice endosperm[J]. Journal of Experimental Botany, 2019, 70(4): 1 299-1 311. |
[39] | 王丹英, 章秀福, 朱智伟, 等. 食用稻米品质性状间的相关性分析[J]. 作物学报, 2005, 31(8):1086-1 091. |
[40] | 罗玉坤, 朱智伟, 陈能, 等. 中国主要稻米的粒型及其品质特性[J]. 中国水稻科学, 2004, 18(2):135-139. |
[41] | 徐正进, 陈温福, 马殿荣, 等. 稻谷粒形与稻米主要品质性状的关系[J]. 作物学报, 2004, 30(9):894-900. |
[42] | 陈书强, 薛菁芳, 潘国君, 等. 粳稻粒位间蛋白质及其组分与品质性状间的相关性研究[J]. 中国粮油学报, 2015, 30(7):1-6. |
[43] | 杨维丰, 詹鹏麟, 林少俊, 等. 水稻粒形的遗传研究进展[J]. 华南农业大学学报, 2019, 40(5):203-210. |
[44] | PEREZ C M, JULIANO B O, LIBOON S P, et al. Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice[J]. Cereal Chemistry, 1996, 73(5): 556-560. |
[45] | LEESAWATWONG M, JAMJOD S, KUO J, et al. Nitrogen fertilizer increases seed protein and milling quality of rice[J]. Cereal Chemistry, 2005, 82(5): 588-593. |
[46] | NANGJU D, DATTA S. Effect of time of harvest and nitrogen level on yield and grain breakage in transplanted rice[J]. Agronomy Journal, 1970, 62(4): 468-474. |
[47] | BALINDONG J L, WARD R M, ROSE T J, et al. Rice grain protein composition influences head rice yield[J]. Cereal Chemistry, 2018, 95(2): 253-263. |
[48] | TAN Y F, SUN M, XING Y Z, et al. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid[J]. Theoretical and Applied Genetics, 2001, 103(6-7): 1 037-1 045. |
[49] | 任顺成, 王素雅. 稻米中的蛋白质分布与营养分析[J]. 中国粮油学报, 2002, 17(6):35-38. |
[50] | AMAGLIANI L, O'REGAN J, KELLY A L, et al. The composition, extraction, functionality and applications of rice proteins: A review[J]. Trends in Food Science & Technology, 2017, 64: 1-12. |
[51] | 应存山. 中国稻种资源[M]. 北京: 中国农业科技出版社, 1993. |
[52] | BALINDONG J, LIU L, WATERS D. Defining the Link between Rice grain Protein Profiles and Rice Grain Quality[M]. Australia: Rural Industries Research & Development Corporation, 2017. |
[53] | BALINDONG J L, WARD R M, LIU L, et al. Rice grain protein composition influences instrumental measures of rice cooking and eating quality[J]. Journal of Cereal Science, 2018, 79: 35-42. |
[54] | 杨小雨. 基于淀粉精细结构解析粳米品质形成的理化基础[D]. 南京: 南京农业大学, 2016. |
[55] | 贾良, 丁雪云, 王平荣, 等. 稻米淀粉RVA谱特征及其与理化品质性状相关性的研究[J]. 作物学报, 2008, 34(5):790-794. |
[56] | 刘奇华, 蔡建, 刘敏, 等. 两个籼稻品种垩白对稻米蒸煮食味与营养品质的影响[J]. 中国水稻科学, 2007, 21(3):327-330. |
[57] | 吴长明, 孙传清, 付秀林, 等. 稻米品质性状与产量性状及籼粳分化度的相互关系研究[J]. 作物学报, 2003, 29(6):822-828. |
[58] |
KONG X, ZHU P, SUI Z, et al. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations[J]. Food Chemistry, 2015, 172: 433-440.
PMID |
[59] |
LI H, PRAKASH S, NICHOLSON T M, et al. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains[J]. Food Chemistry, 2016, 196: 702-711.
PMID |
[60] |
TAO K, LI C, YU W, et al. How amylose molecular fine structure of rice starch affects functional properties[J]. Carbohydrate Polymers, 2019, 204: 24-31.
PMID |
[61] | SINGH V, OKADOME H, TOYOSHIMA H, et al. Thermal and physicochemical properties of rice grain, flour and starch[J]. Journal of Agricultural and Food Chemistry, 2000, 48(7): 2 639-2 647. |
[62] | 陈能, 谢黎虹, 段彬伍. 稻米中含二硫键蛋白对其米饭质地的影响[J]. 作物学报, 2007, 33(1):167-170. |
[63] | MARTIN M, FITZGERALD M A. Proteins in rice grains influence cooking properties![J]. Journal of Cereal Science, 2002, 36(3): 285-294. |
[64] | HAMAKER B R, GRIFFIN V K. Changing the viscoelastic properties of cooked rice through protein disruption[J]. Cereal Chemistry, 1990, 67(3): 261-264. |
[65] | HAMAKER B R, GRIFFIN V K. Effect of disulfide bond-containing protein on rice starch gelatinization and pasting[J]. Cereal Chemistry, 1993, 70(4): 377-380. |
[66] | XIE L, CHEN N, DUAN B, et al. Impact of proteins on pasting and cooking properties of waxy and non-waxy rice[J]. Journal of Cereal Science, 2008, 47(2): 372-379. |
[67] | MU-FORSTER C, WASSERMAN B P. Surface localization of zein storage proteins in starch granules from maize endosperm: Proteolytic removal by thermolysin and in vitro cross-linking of granule-associated polypeptides[J]. Plant Physiology, 1998, 116(4): 1563-1571. |
[68] | 丁毅, 华泽田, 王芳, 等. 粳稻蛋白质与蒸煮食味品质的关系[J]. 食品科学, 2012, 33(23):42-46. |
[69] | CHÁVEZ‐MURILLO C E, WANG Y J, QUINTERO‐GUTIERREZ A G, et al. Physicochemical, textural, and nutritional characterization of Mexican rice cultivars[J]. Cereal Chemistry, 2011, 88(3): 245-252. |
[70] | 张欣, 施利利, 丁得亮, 等. 稻米蛋白质相关性状与 RVA 特征谱及食味品质的关系[J]. 食品科技, 2014, 39(10):188-191. |
[71] | 吴洪恺, 刘世家, 江玲, 等. 稻米蛋白质组分及总蛋白质含量与淀粉RVA谱特征值的关系[J]. 中国水稻科学, 2009, 23(4):421-426. |
[72] | BAXTER G, BLANCHARD C, ZHAO J. Effects of prolamin on the textural and pasting properties of rice flour and starch[J]. Journal of Cereal Science, 2004, 40(3): 205-211. |
[73] | BAXTER G, BLANCHARD C, ZHAO J. Effects of glutelin and globulin on the physicochemical properties of rice starch and flour[J]. Journal of Cereal Science, 2014, 60(2): 414-420. |
[74] | 周国燕, 胡琦玮, 李红卫, 等. 水分含量对淀粉糊化和老化特性影响的差示扫描量热法研究[J]. 食品科学, 2009, 30(19):89-92. |
[75] | ZHOU Z, ROBARDS K, HELLIWELL S, et al. Effect of storage temperature on rice thermal properties[J]. Food Research International, 2010, 43(3): 709-715. |
[76] | 刘桃英, 刘成梅, 付桂明, 等. 大米蛋白对大米粉糊化性质的影响[J]. 食品工业科技, 2013, 34(2):97-99. |
[77] | 王鹏跃. 稻米蛋白质及组成对其蒸煮食味品质影响的研究[D]. 杭州: 浙江工商大学, 2016. |
[78] | 路凯, 赵庆勇, 周丽慧, 等. 稻米蛋白质含量与食味品质的关系及其影响因素研究进展[J]. 江苏农业学报, 2020, 36(5):1305-1 311. |
[79] | MO Z, LI Y, NIE J, et al. Nitrogen application and different water regimes at booting stage improved yield and 2-acetyl-1-pyrroline (2AP) formation in fragrant rice[J]. Rice, 2019, doi: 10.1186/s12284-019-0328-4. |
[80] | 王静, 毛慧佳, 李洪岩. 大米淀粉结构与质构品质的研究进展[J]. 中国食品学报, 2020, 20(1):1-9. |
[81] | WOOD R M, DUNN B W, BALINDONG J L, et al. Effect of agronomic management on rice grain quality Part II: Nitrogen rate and timing[J]. Cereal Chemistry, 2021, 98(2): 234-248. |
[82] | SIAW M O, WANG Y J, MCCLUNG A M, et al. Porosity and hardness of long-grain brown rice kernels in relation to their chemical compositions[J]. LWT- Food Science and Technology, 2021, 144: 111 243. |
[83] | CAMERON D K, WANG Y J. A better understanding of factors that affect the hardness and stickiness of long‐grain rice[J]. Cereal Chemistry, 2005, 82(2): 113-119. |
[84] | ZHANG Y J, CHEN Y Y, YAN G J, et al. Effects of nitrogen nutrition on grain quality in upland rice Zhonghan 3 and paddy rice Yangjing 9538 under different cultivation methods[J]. Acta Agronomica Sinica, 2009, 35(10): 1 866-1 874. |
[85] | CHAMPAGNE E T, BETT-GARBER K L, THOMSON J L, et al. Unraveling the impact of nitrogen nutrition on cooked rice flavor and texture[J]. Cereal Chemistry, 2009, 86(3): 274-280. |
[86] | DERYCKE V, VERAVERBEKE W S, VANDEPUTTE G E, et al. Impact of proteins on pasting and cooking properties of nonparboiled and parboiled rice[J]. Cereal Chemistry, 2005, 82(4): 468-474. |
[87] | 胡雅杰, 薛建涛, 吴培, 等. 施氮量和直播密度对稻米食味品质和淀粉结构的影响[J/OL]. 中国粮油学报, https://kns.cnki.net/kcms/detail/11.2864.TS.20210617.0842.002.html. |
[88] | 张春红, 李金州, 田孟祥, 等. 不同食味粳稻品种稻米蛋白质相关性状与食味的关系[J]. 江苏农业学报, 2010, 26(6):1126-1 132. |
[89] | 王琦. 粳稻蒸煮食味品质形成的理化基础研究[D]. 南京: 南京农业大学, 2016. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 胡江博, 任正鹏, 丁翔, 王朝全, 冯阳, 王笑见, 张翔, 胥南飞. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19. |
[3] | 王云翔, 咸云宇, 赵灿, 王维领, 霍中洋. 缓控释氮肥施用技术在水稻上应用研究进展与展望[J]. 中国稻米, 2023, 29(4): 20-26. |
[4] | 李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44. |
[5] | 薛莲, 段圣省, 郑兴飞, 殷得所, 董华林, 胡建林, 王红波, 查中萍, 郭英, 曹鹏, 徐得泽. 湖北省水稻生产发展现状及对策建议[J]. 中国稻米, 2023, 29(4): 45-47. |
[6] | 王昕, 刘炜, 马洪文, 贺奇, 冯伟东, 张益民, 李虹, 殷延勃. 宁夏优质稻育种历程、问题及展望[J]. 中国稻米, 2023, 29(4): 48-52. |
[7] | 孙志广, 刘艳, 李景芳, 周振玲, 邢运高, 徐波, 周群, 王德荣, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻萌发耐淹性鉴定评价方法研究及种质资源筛选[J]. 中国稻米, 2023, 29(4): 53-58. |
[8] | 王兴为, 王志成. 秸秆还田与深施氮肥对水稻叶片生理特征、氮素利用及产量的影响[J]. 中国稻米, 2023, 29(4): 59-65. |
[9] | 赫兵, 李超, 严永峰, 刘月月, 赫靖淇, 于天华, 王帅, 陈殿元, 严光彬. 水稻秸秆秋季水耙浆还田对土壤及水稻性状的影响[J]. 中国稻米, 2023, 29(4): 66-71. |
[10] | 董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析[J]. 中国稻米, 2023, 29(4): 84-89. |
[11] | 吴涛, 邓宏中, 赵迎曦, 杨琛, 郭昱, 赵有权, 谢志梅, 张立阳, 杨远柱. 隆平高科水稻绿色通道2016—2021年审定品种分析[J]. 中国稻米, 2023, 29(4): 90-94. |
[12] | 邵泽毅, 谭旭生, 伍斌, 管恩相. 稻田小龙虾轮捕轮放寄养技术浅析[J]. 中国稻米, 2023, 29(4): 98-100. |
[13] | 黄日伟, 廖春良, 梁月宽, 杨绍意, 尚子帅, 姚云峰. 华浙优261在广西不同海拔作早中晚稻种植表现及高产栽培技术[J]. 中国稻米, 2023, 29(4): 106-107. |
[14] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
[15] | 严如玉, 甘国渝, 赵希梅, 殷大聪, 李燕丽, 金慧芳, 朱海, 李继福. 我国水稻优势产区生产格局及施肥现状研究[J]. 中国稻米, 2023, 29(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||