中国稻米 ›› 2022, Vol. 28 ›› Issue (5): 92-106.DOI: 10.3969/j.issn.1006-8082.2022.05.015
袁华1(), 陈薇兰2, 王淏2, 王玉平1, 马炳田2, 涂斌2, 钦鹏2, 李仕贵1,2,*()
收稿日期:
2022-08-02
出版日期:
2022-09-20
发布日期:
2022-09-21
通讯作者:
李仕贵
作者简介:
yuanhua14536@sicau.edu.cn
基金资助:
YUAN Hua1(), CHEN Weilan2, WANG Hao2, WANG Yuping1, MA Bingtian2, TU Bin2, QIN Peng2, LI Shigui1,2,*()
Received:
2022-08-02
Online:
2022-09-20
Published:
2022-09-21
Contact:
LI Shigui
摘要:
水稻是我国重要的粮食作物,全国有60%以上人口以大米为主食。西南稻区是我国六大稻区之一,对保障我国粮食安全具有重要的战略意义。针对西南稻区“寡日照、高湿度、小温差”的生态条件,周开达院士等经历了艰苦的探索和反复实践,提出发展“重穗型”杂交稻是西南稻区实现水稻超高产的重要途径。本文总结了西南稻区重穗型杂交稻发展现状,列举了可用于重穗型杂交稻分子设计育种的基因资源,提出了重穗型杂交稻的分子设计育种策略,以期为培育新的高产优质“重穗协调型”品种提供参考,致力于打造更高水平的“天府粮仓”。
中图分类号:
袁华, 陈薇兰, 王淏, 王玉平, 马炳田, 涂斌, 钦鹏, 李仕贵. 西南稻区重穗型杂交稻发展现状及分子设计育种策略[J]. 中国稻米, 2022, 28(5): 92-106.
YUAN Hua, CHEN Weilan, WANG Hao, WANG Yuping, MA Bingtian, TU Bin, QIN Peng, LI Shigui. Current Situation and Molecular Design Breeding Strategy of Heavy Panicle Hybrid Rice in Southwest China[J]. China Rice, 2022, 28(5): 92-106.
[1] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10):841-857. |
[2] | DONALD C M. The breeding of crop ideotypes[J]. Euphytica, 1968, 17: 385-403. |
[3] | 黄耀祥. 半矮秆、早长根深、超高产、特优质中国超级稻生态育种工程[J]. 广东农业科学, 2001, 38(3):2-6. |
[4] | 杨守仁, 张龙步, 陈温福, 等. 水稻超高产育种的理论和方法[J]. 中国水稻科学, 1996, 10(2):115-120. |
[5] | 袁隆平. 杂交水稻超高产育种[J]. 杂交水稻, 1997, 12(6):4-9. |
[6] | 周开达, 马玉清, 刘太清, 等. 杂交水稻亚种间重穗型组合选育──杂交水稻超高产育种的理论与实践[J]. 四川农业大学学报, 1995, 13(4):403-407. |
[7] | 周开达, 汪旭东, 李仕贵, 等. 亚种间重穗型杂交稻研究[J]. 中国农业科学, 1997, 30(5):92-94. |
[8] | 周开达. 四川水稻超高产育种的发展趋势[J]. 西南农业学报, 1998, 11(suppl2):5-10. |
[9] | 王玉平, 李仕贵, 黎汉云, 等. 高配合力优质水稻恢复系蜀恢527的选育与利用[J]. 杂交水稻, 2004, 19(4):14-16. |
[10] | 李仕贵, 王玉平, 马柄田. 重穗协调型杂交稻育种研究[C]. 中国作物学会. 2011年中国作物学会学术年会论文摘要集. 北京: 中国作物学会, 2011:131. |
[11] | QIN P, TU B, WANG Y, et al. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice[J]. Plant and Cell Physiology, 2013, doi: 10.1093/pcp/pcs162. |
[12] | 马均, 马文波, 明东风, 等. 重穗型水稻株型特性研究[J]. 中国农业科学, 2006, 39(4):679-685. |
[13] | 王石光. 重穗型杂交稻骨干亲本蜀恢498重要农艺性状的遗传解析[D]. 成都: 四川农业大学, 2017. |
[14] | 张向阳, 张红宇, 徐培洲, 等. 重穗型水稻穗部性状及剑叶宽的QTL定位[J]. 杂交水稻, 2014, 29(6):56-61. |
[15] | TIAN Y H, ZHANG H Y, XU P Z, et al. Genetic mapping of a QTL controlling leaf width and grain number in rice[J]. Euphytica, 2015, 202: 1-11. |
[16] | WANG S G, MA B T, GAO Q, et al. Dissecting the genetic basis of heavy panicle hybrid rice uncovered Gn1a and GS3 as key genes[J]. Theoretical and Applied Genetics, 2018, 131: 1 391-1 403. |
[17] | YUAN H, FAN S J, HUANG J, et al. 08SG2/OsBAK1 regulates grain size and number, and functions differently in indica and japonica backgrounds in rice[J]. Rice, 2017, https://doi.org/10.1186/s12284-017-0165-2. |
[18] | YUAN H, XU Z, CHEN W, et al. OsBSK2, a putative brassinosteroid-signaling kinase, positively controls grain size in rice[J]. Journal of Experimental Botany, 2022, doi: 10.1093/jxb/erac222. |
[19] | ZHANG X, QIN P, PENG Y, et al. A single nucleotide substitution at 5'-UTR of GSN1 represses its translation and leads to an increase of grain length in rice[J]. Journal of Genetics and Genomics, 2019, 46(2): 105-108. |
[20] | HU L, CHEN W L, YANG W, et al. OsSPL9 regulates grain number and grain yield in rice[J]. Frontiers in Plant Science, 2021, doi: 10.3389/fpls.2021.682018. |
[21] | QIN P, ZHANG G H, HU B H, et al. Leaf-derived ABA regulates rice seed development via a transporter-mediated and temperature-sensitive mechanism[J]. Science Advances, 2021, doi: 10.1126/SCIADV.ABC8873. |
[22] | GUO L N, CHEN W L, TAO L, et al. GWC1 is essential for high grain quality in rice[J]. Plant Science, 2020, doi: 10.1016/j.plantsci.2020.110497. |
[23] | 马均, 马文波, 田彦华, 等. 重穗型水稻植株抗倒伏能力的研究[J]. 作物学报, 2004, 30(2):143-148. |
[24] | 范存留, 胡运高, 杨国涛, 等. 重穗型杂交水稻植株抗倒伏性与茎秆物理性状的关系[J]. 贵州农业科学, 2015, 43(3):1-4. |
[25] | 周雷. 一个水稻茎粗抗倒QTL的定位及其候选基因分析[D]. 成都: 四川农业大学, 2018. |
[26] | TU B, TAO Z, WANG S G, et al. Loss of Gn1a/OsCKX2 confers heavy-panicle rice with excellent lodging resistance[J]. Journal of Integrative Plant Biology, 2022, 64(1): 23-38. |
[27] | PELEMAN J D, VAN DER VOORT J R. Breeding by design[J]. Trends in Plant Science, 2003, 8(7): 330-334. |
[28] | SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, et al. Green revolution: A mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416(6882): 701-702. |
[29] | SU S, HONG J, CHEN X, et al. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice[J]. Plant Biotechnology Journal, 2021, 19(11): 2 304-2 318. |
[30] | LI S, TIAN Y H, WU K, et al. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560(7720): 595-600. |
[31] | YANO K, MORINAKA Y, WANG F M, et al. GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(42): 21 262-21 267. |
[32] | LIU C, ZHENG S, GUI J S, et al. Shortened basal internodes encodes a gibberellin 2-Oxidase and contributes to lodging resistance in rice[J]. Molecular Plant, 2018, 11(2): 288-299. |
[33] | QU R, ZHANG P, LIU Q, et al. Genome-edited ATP BINDING CASSETTE B1 transporter SD8 knockouts have optimized rice architecture without yield penalty[J]. Plant Communications, 2022, doi: 10.1016/j.xplc.2022.100347. |
[34] | LI X Y, QIAN Q, FU Z M, et al. Control of tillering in rice[J]. Nature, 2003, 422(6932): 618-621. |
[35] | LIAO Z, YU H, DUAN J, et al. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice[J]. Nature Communications, 2019, doi: 10.1038/s41467-019-10667-2. |
[36] | SHAO G N, LU Z F, XIONG J S, et al. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice[J]. Molecular Plant, 2019, 12(8): 1 090-1 102. |
[37] | TAKEDA T, SUWA Y, SUZUKI M, et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. Plant Journal, 2003, 33(3): 513-520. |
[38] | WANG Y X, SHANG L G, YU H, et al. A strigolactone biosynthesis gene contributed to the green revolution in rice[J]. Molecular Plant, 2020, 13(6): 923-932. |
[39] | JIN J, HUANG W, GAO J P, et al. Genetic control of rice plant architecture under domestication[J]. Nature Genetics, 2008, 40(11): 1 365-1 369. |
[40] | TAN L B, LI X R, LIU F X, et al. Control of a key transition from prostrate to erect growth in rice domestication[J]. Nature Genetics, 2008, 40(11): 1 360-1 364. |
[41] | YU B S, LIN Z W, LI H X, et al. TAC1, a major quantitative trait locus controlling tiller angle in rice[J]. Plant Journal, 2007, 52(5): 891-898. |
[42] | ZHANG W F, TAN L B, SUN H Y, et al. Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice[J]. Molecular Plant, 2019, 12(8): 1 075-1 089. |
[43] | LI P J, WANG Y H, QIAN Q, et al. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J]. Cell Research, 2007, 17(5): 402-410. |
[44] | WU X R, TANG D, LI M, et al. Loose plant architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice[J]. Plant Physiology, 2013, 161(1): 317-329. |
[45] | LI H, SUN H Y, JIANG J H, et al. TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice[J]. Plant Biotechnology Journal, 2021, 19(1): 64-73. |
[46] | CAO Y Y, ZHONG Z J, WANG H Y, et al. Leaf angle: A target of genetic improvement in cereal crops tailored for high-density planting[J]. Plant Biotechnology Journal, 2022, 20(3): 426-436. |
[47] | ZHANG L, WANG R C, XING Y D, et al. Separable regulation of POW1 in grain size and leaf angle development in rice[J]. Plant Biotechnology Journal, 2021, 19(12): 2 517-2 531. |
[48] | XU P, ALI A, HAN B, et al. Current advances in molecular basis and mechanisms regulating leaf morphology in rice[J]. Frontiers in Plant Science, 2018, doi: 10.3389/fpls.2018.01528. |
[49] | OUYANG X, ZHONG X Y, CHANG S Q, et al. Partially functional NARROW LEAF1 balances leaf photosynthesis and plant architecture for greater rice yield[J]. Plant Physiology, 2022, 189(2): 772-789. |
[50] | FUJITA D, TRIJATMIKO K R, TAGLE A G, et al. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51): 20 431-20 436. |
[51] | QI J, QIAN Q, BU Q Y, et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport[J]. Plant Physiology, 2008, 147(4): 1 947-1 959. |
[52] | ZHANG G H, LI S Y, WANG L, et al. LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11[J]. Molecular Plant, 2014, 7(8): 1 350-1 364. |
[53] | FANG J J, GUO T T, XIE Z W, et al. The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1gene to modulate leaf rolling in rice Plant Physiology, 2021, 185(4): 1 722-1 744. |
[54] | XU Y, KONG W, WANG F, et al. Heterodimer formed by ROC8 and ROC5 modulates leaf rolling in rice[J]. Plant Biotechnology Journal, 2021, 19(12): 2 662-2 672. |
[55] | SUN J, CUI X A, TENG S Z, et al. HD-ZIP IV gene ROC8 regulates the size of bulliform cells and lignin content in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2 559-2 572. |
[56] | LI G L, ZHANG H L, LI J J, et al. Genetic control of panicle architecture in rice[J]. The Crop Journal, 2021, 9(3): 590-597. |
[57] | HUANG X H, QIAN Q, LIU Z B, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics, 2009, 41(4): 494-497. |
[58] | ASHIKARI M, SAKAKIBARA H, LIN S, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745. |
[59] | YANG J, CHO L H, YOON J, et al. Chromatin interacting factor OsVIL2 increases biomass and rice grain yield[J]. Plant Biotechnology Journal, 2019, 17(1): 178-187. |
[60] | LI S Y, ZHAO B R, YUAN D Y, et al. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 3 167-3 172. |
[61] | GUO T, LU Z Q, SHAN J X, et al. ERECTA1 acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice[J]. The Plant Cell, 2020, 32(9): 2 763-2 779. |
[62] | KOMATSU M, CHUJO A, NAGATO Y, et al. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets[J]. Development, 2003, 130(16): 3 841-3 850. |
[63] | BAI X F, HUANG Y, HU Y, et al. Duplication of an upstream silencer of FZP increases grain yield in rice[J]. Nature Plants, 2017, 3(11): 885-893. |
[64] | WU Y, WANG Y, MI X F, et al. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems[J]. PLoS Genetics, 2016, doi: 10.1371/journal.pgen.1006386. |
[65] | HUO X, WU S, ZHU Z F, et al. NOG1 increases grain production in rice[J]. Nature Communications, 2017, https://doi.org/10.1038/s41467-017-01501-8. |
[66] | YOSHIDA A, SASAO M, YASUNO N, et al. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 767-772. |
[67] | YUAN H, XU Z Y, TAN X Q, et al. A natural allele of TAW1 contributes to high grain number and grain yield in rice[J]. The Crop Journal, 2021, 9(5): 1 060-1 069. |
[68] | JIAO Y Q, WANG Y H, XUE D W, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6): 541-544. |
[69] | MIURA K, IKEDA M, MATSUBARA A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics, 2010, 42(6): 545-549. |
[70] | LU Z, YU H, XIONG G, et al. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture[J]. The Plant Cell, 2013, 25(10): 3 743-3 759. |
[71] | ZHANG L, YU H, MA B, et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice[J]. Nature Communications, 2017, doi: 10.1038/ncomms14789. |
[72] | WANG J, ZHOU L, HUI S, et al. A single transcription factor promotes both yield and immunity in rice[J]. Science, 2018, 361(6406): 1 026-1 028. |
[73] | WANG J, YU H, XIONG G S, et al. Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice[J]. The Plant Cell, 2017, 29(4): 697-707. |
[74] | WANG S S, WU K, QIAN Q, et al. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield[J]. Cell Research, 2017, 27(9): 1 142-1 156. |
[75] | DUAN E C, WANG Y, LI X H, et al. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice[J]. The Plant Cell, 2019, 31(5): 1 026-1 042. |
[76] | LI G M, TANG J Y, ZHENG J K, et al. Exploration of rice yield potential: Decoding agronomic and physiological traits[J]. The Crop Journal, 2021, 9(3): 577-589. |
[77] | LI N, XU R, LI Y H. Molecular networks of seed size control in plants[J]. Annual Review of Plant Biology, 2019, 70:435-463. |
[78] | FAN C C, XING Y Z, MAO H L, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1 164-1 171. |
[79] | MAO H L, SUN S Y, YAO J L, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19 579-19 584. |
[80] | YANG W S, WU K, WANG B, et al. The RING E 3 ligase CLG1 targets GS3for degradation via the endosome pathway to determine grain size in rice Molecular Plant, 2021, 14(10): 1 699-1 713. |
[81] | LIU Q, HAN R X, WU K, et al. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature Communications, 2018, doi: 10.1038/s41467-018-03047-9. |
[82] | YU J P, MIAO J L, ZHANG Z Y, et al. Alternative splicing of OsLG3b controls grain length and yield in japonica rice[J]. Plant Biotechnology Journal, 2018, doi: 10.1111/pbi.12903. |
[83] | ISHIMARU K, HIROTSU N, MADOKA Y, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013, 45(6): 707-711. |
[84] | GAO X Y, ZHANG J Q, ZHANG X J, et al. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling[J]. The Plant Cell, 2019, 31(5): 1 077- 1 093. |
[85] | ZHANG X J, WANG J F, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21 534-21 539. |
[86] | QI P, LIN Y S, SONG X J, et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22(12): 1 666-1 680. |
[87] | HU Z J, HE H H, ZHANG S Y, et al. A kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice[J]. Journal of Integrative Plant Biology, 2012, 54(12): 979-990. |
[88] | LIU D P, ZHAO H, XIAO Y H, et al. A cryptic inhibitor of cytokinin phosphorelay controls rice grain size[J]. Molecular Plant, 2022, 15(2): 293-307. |
[89] | QIAO J Y, JIANG H Z, LIN Y Q, et al. A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice[J]. Molecular Plant, 2021, 14(10): 1 683-1 698. |
[90] | HU Z, LU S J, WANG M J, et al. A novel QTL qTGW3 encodes the GSK3/SHAGGY-Like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant, 2018, 11(5): 736-749. |
[91] | XIA D, ZHOU H, LIU R J, et al. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular Plant, 2018, 11(5): 754-756. |
[92] | YING J Z, MA M, BAI C, et al. TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant, 2018, 11(5): 750-753. |
[93] | SONG X J, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39(5): 623-630. |
[94] | HAO J Q, WANG D K, WU Y B, et al. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice[J]. Molecular Plant, 2021, 14(8): 1 266-1 280. |
[95] | LIU J F, CHEN J, ZHENG X M, et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants, 2017, doi: 10.1038/nplants.2017.43. |
[96] | DUAN P G, XU J S, ZENG D L, et al. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice[J]. Molecular Plant, 2017, 10(5): 685-694. |
[97] | ZHANG X F, YANG C Y, LIN H X, et al. Rice SPL12 coevolved with GW5 to determine grain shape[J]. Science Bulletin, 2021, 66(23): 2 353-2 357. |
[98] | RUAN B P, SHANG L G, ZHANG B, et al. Natural variation in the promoter of TGW2 determines grain width and weight in rice[J]. New Phytologist, 2020, 227(2): 629-640. |
[99] | LI Y B, FAN C C, XING Y Z, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1 266-1 269. |
[100] | XU C J, LIU Y, LI Y B, et al. Differential expression of GS5 regulates grain size in rice[J]. Journal of Experimental Botany, 2015, 66(9): 2 611-2 623. |
[101] | SHI C L, DONG N Q, GUO T, et al. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway[J]. Plant Journal, 2020, 103(3): 1 174-1 188. |
[102] | HU J, WANG Y X, FANG Y X, et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant, 2015, 8(10): 1 455-1 465. |
[103] | CHE R H, TONG H N, SHI B H, et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nature Plants, 2015, doi: 10.1038/nplants2016.2. |
[104] | DUAN P G, NI S, WANG J M, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nature Plants, 2015, https://doi.org/10.1038/nplants.2015.226. |
[105] | LI S C, GAO F Y, XIE K L, et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice[J]. Plant Biotechnology Journal, 2016, 14(11): 2 134-2 146. |
[106] | CHEN X L, JIANG L R, ZHENG J S, et al. A missense mutation in Large Grain Size 1 increases grain size and enhances cold tolerance in rice[J]. Journal of Experimental Botany, 2019, 70(15): 3 851-3 866. |
[107] | SUN P Y, ZHANG W H, WANG Y H, et al. OsGRF4 controls grain shape, panicle length and seed shattering in rice[J]. Journal of Integrative Plant Biology, 2016, 58(10): 836-847. |
[108] | WANG S K, WU K, YUAN Q B, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[109] | WANG Y X, XIONG G S, HU J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[110] | WANG S K, LI S, LIU Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. |
[111] | ZHAO D S, LI Q F, ZHANG C Q, et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications, 2018, doi: 10.1038/s41467-018-03616-y. |
[112] | DONG N Q, SUN Y, GUO T, et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice[J]. Nature Communications, 2020, https://doi.org/10.1038/s41467-020-16403-5. |
[113] | ZHAO D S, ZHANG C Q, LI Q F, et al. Genetic control of grain appearance quality in rice[J]. Biotechnology Advances, 2022, https://doi.org/10.1016/j.biotechadv.2022.108014. |
[114] | 李然, 钱前, 高振宇. 水稻品质的遗传与育种改良研究进展[J]. 生物技术通报, 2022, 38(4):4-19. |
[115] | LI Y B, FAN C C, XING Y Z, et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[116] | WU B, YUN P, ZHOU H, et al. Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain quality[J]. The Plant Cell, 2022, 34(5): 1 912-1 932. |
[117] | WU Z H, ZHANG X, CHANG G M, et al. Natural alleles of a uridine 5'-diphospho-glucosyltransferase gene responsible for differential endosperm development between upland rice and paddy rice[J]. Journal of Integrative Plant Biology, 2022, 64(1): 135-148. |
[118] | 朱霁晖, 张昌泉, 顾铭洪, 等. 水稻Wx基因的等位变异及育种利用研究进展[J]. 中国水稻科学, 2015, 29(4):431-438. |
[119] | ZHANG C Q, YANG Y, CHEN S J, et al. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 2021, 63(5): 889-901. |
[120] | ZHOU H, XIA D, ZHAO D, et al. The origin of Wxla provides new insights into the improvement of grain quality in rice[J]. Journal of Integrative Plant Biology, 2021, 63(5): 878-888. |
[121] | 高振宇, 曾大力, 崔霞, 等. 水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析[J]. 中国科学(C辑:生命科学), 2003, 33(6):481-487. |
[122] | GAO Z Y, ZENG D L, CHENG F M, et al. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice[J]. Journal of Integrative Plant Biology, 2011, 53(9): 756-765. |
[123] | CHEN Z Z, LU Y, FENG L H, et al. Genetic dissection and functional differentiation of ALKa and ALKb, two natural alleles of the ALK/SSIIa gene, responding to low gelatinization temperature in rice[J]. Rice, 2020, https://doi.org/10.1186/s12284-020-00393-5. |
[124] | ZHENG L, LIU P, ZHANG S X, et al. Favorable allele mining and breeding utilization of ALK in rice[J]. Molecular Breeding, 2020, https://doi.org/10.1007/s11032-020-01183-z. |
[125] | CHEN S, YANG Y, SHI W, et al. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]. The Plant Cell, 2008, 20(7): 1850-1861. |
[126] | KOVACH M J, CALINGACION M N, FITZGERALD M A, et al. The origin and evolution of fragrance in rice (Oryza sativa L.)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14 444-14 449. |
[127] | PENG B, KONG H L, LI Y B, et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nature Communications, 2014, doi: 10.1038.ncmms5847. |
[128] | YANG Y H, GUO M, SUN S Y, et al. Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications, 2019, https://doi.org/10.1038/s41467-019-09919-y. |
[129] | ZHOU H, XIA D, LI P B, et al. Genetic architecture and key genes controlling the diversity of oil composition in rice grains[J]. Molecular Plant, 2021, 14(3): 456-469. |
[130] | LI G L, XU B X, ZHANG Y P, et al. RGN1 controls grain number and shapes panicle architecture in rice[J]. Plant Biotechnology Journal, 2022, 20(1): 158-167. |
[131] | 余四斌, 孙文强, 王记林, 等. 水稻种质资源及其在功能基因组中的应用[J]. 生命科学, 2016, 28(10):1122-1 128. |
[132] | WANG W S, MAULEON R, HU Z Q, et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice[J]. Nature, 2018, 557: 43-49. |
[133] | SHANG L G, LI X X, HE H Y, et al. A super pan-genomic landscape of rice[J]. Cell Research, 2022, https://doi.org/10.1038/s41422-022-00685-z. |
[134] | LI X X, CHEN Z, ZHANG G M, et al. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions[J]. Science China-Life Sciences, 2020, 63(11): 1 688-1 702. |
[135] | QIN P, LU H W, DU H, et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations[J]. Cell, 2021, 184(13): 3 542-3 558. |
[136] | CHEN R Z, DENG Y W, DING Y L, et al. Rice functional genomics: Decades' efforts and roads ahead[J]. Science China-Life Sciences, 2022, 65(1): 33-92. |
[137] | WEI S B, LI X, LU Z F, et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice[J]. Science, 2022, doi: 10.1126/science.abi8455. |
[138] | SONG J M, XIE W Z, WANG S, et al. Two gap-free reference genomes and a global view of the centromere architecture in rice[J]. Molecular Plant, 2021, 14(10): 1 757-1 767. |
[139] | LI K, JIANG W K, HUI Y Y, et al. Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution[J]. Molecular Plant, 2021, 14(10): 1 745-1 756. |
[140] | DU H L, YU Y, MA Y F, et al. Sequencing and de novo assembly of a near complete indica rice genome[J]. Nature Communications, 2017, https://doi.org/10.1038/ncomms15324. |
[141] | 薛勇彪, 种康, 韩斌, 等. 开启中国设计育种新篇章——“分子模块设计育种创新体系”战略性先导科技专项进展[J]. 中国科学院院刊, 2015, 30(3):393-402. |
[142] | ZENG D L, TIAN Z X, RAO Y C, et al. Rational design of high-yield and superior-quality rice[J]. Nature Plants, 2017, https://doi.org/10.1038/nplants.2017.31. |
[143] | XU J L, XING Y Z, XU Y B, et al. Breeding by design for future rice: Genes and genome technologies[J]. The Crop Journal, 2021, 9(3): 491-496. |
[144] | XIE C X, XU Y B, WAN J M. Crop genome editing: A way to breeding by design[J]. The Crop Journal, 2020, 8(3): 379-383. |
[145] | 黄廷友, 李仕贵, 王玉平, 等. 分子标记辅助选择改良蜀恢527对白叶枯病的抗性[J]. 生物工程学报, 2003, 19(2):153-157. |
[146] | HUANG L C, LI Q F, ZHANG C Q, et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18(11): 2 164-2 166. |
[147] | ZENG D C, LIU T, MA X L, et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2 385-2 387. |
[148] | XU Y, LIN Q P, LI X F, et al. Fine-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2021, 19(1): 11-13. |
[149] | HUI S Z, LI H J, MAWIA A M, et al. Production of aromatic three-line hybrid rice using novel alleles of BADH2[J]. Plant Biotechnology Journal, 2022, 20(1): 59-74. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 胡江博, 任正鹏, 丁翔, 王朝全, 冯阳, 王笑见, 张翔, 胥南飞. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19. |
[3] | 王云翔, 咸云宇, 赵灿, 王维领, 霍中洋. 缓控释氮肥施用技术在水稻上应用研究进展与展望[J]. 中国稻米, 2023, 29(4): 20-26. |
[4] | 李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44. |
[5] | 薛莲, 段圣省, 郑兴飞, 殷得所, 董华林, 胡建林, 王红波, 查中萍, 郭英, 曹鹏, 徐得泽. 湖北省水稻生产发展现状及对策建议[J]. 中国稻米, 2023, 29(4): 45-47. |
[6] | 王昕, 刘炜, 马洪文, 贺奇, 冯伟东, 张益民, 李虹, 殷延勃. 宁夏优质稻育种历程、问题及展望[J]. 中国稻米, 2023, 29(4): 48-52. |
[7] | 孙志广, 刘艳, 李景芳, 周振玲, 邢运高, 徐波, 周群, 王德荣, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻萌发耐淹性鉴定评价方法研究及种质资源筛选[J]. 中国稻米, 2023, 29(4): 53-58. |
[8] | 王兴为, 王志成. 秸秆还田与深施氮肥对水稻叶片生理特征、氮素利用及产量的影响[J]. 中国稻米, 2023, 29(4): 59-65. |
[9] | 赫兵, 李超, 严永峰, 刘月月, 赫靖淇, 于天华, 王帅, 陈殿元, 严光彬. 水稻秸秆秋季水耙浆还田对土壤及水稻性状的影响[J]. 中国稻米, 2023, 29(4): 66-71. |
[10] | 董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析[J]. 中国稻米, 2023, 29(4): 84-89. |
[11] | 吴涛, 邓宏中, 赵迎曦, 杨琛, 郭昱, 赵有权, 谢志梅, 张立阳, 杨远柱. 隆平高科水稻绿色通道2016—2021年审定品种分析[J]. 中国稻米, 2023, 29(4): 90-94. |
[12] | 邵泽毅, 谭旭生, 伍斌, 管恩相. 稻田小龙虾轮捕轮放寄养技术浅析[J]. 中国稻米, 2023, 29(4): 98-100. |
[13] | 黄日伟, 廖春良, 梁月宽, 杨绍意, 尚子帅, 姚云峰. 华浙优261在广西不同海拔作早中晚稻种植表现及高产栽培技术[J]. 中国稻米, 2023, 29(4): 106-107. |
[14] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
[15] | 严如玉, 甘国渝, 赵希梅, 殷大聪, 李燕丽, 金慧芳, 朱海, 李继福. 我国水稻优势产区生产格局及施肥现状研究[J]. 中国稻米, 2023, 29(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||