中国稻米 ›› 2015, Vol. 21 ›› Issue (4): 25-32.DOI: 10.3969/j.issn.1006-8082.2015.04.005
出版日期:
2015-07-20
发布日期:
2015-07-20
基金资助:
国家“973”计划(2015CB150400);江苏省自然科学基金(BK20140480);江苏省高校自然科学基金(14KJB210007);中国博士后基金(2014M550312)
Online:
2015-07-20
Published:
2015-07-20
摘要: 光合作用是复杂的生物合成过程,是决定水稻产量潜力的重要因素。提高水稻产量的方向已经由以往的挑选最佳株型和提高收获指数转向提高光合速率或者光利用率。本文综述了水稻光合作用的光反应与暗反应过程中的生理限制因素,归纳了提高光合效率的多种潜在途径,包括:优化冠层中叶绿素分布梯度,增加Rubisco酶的羧化活性,减少光呼吸消耗,平衡RuBP的再生和羧化能力等。也从实践角度探讨了遗传改良中可能的靶标生理途径,包括:降低Rubisco酶的加氧活性,提高叶肉导度以及构建C4水稻。相对于C3光合途径,C4光合途径具有CO2浓缩机制,从而有更高效的光合速率以及光能利用率,通过基因工程技术将C4关键光合酶/基因引入水稻,对提高水稻光合效率有很大的帮助。
中图分类号:
周振翔, 李志康, 戴琪星, 孔祥胜, 王志琴, 顾骏飞. 水稻光合生理限制因素及改善途径研究[J]. 中国稻米, 2015, 21(4): 25-32.
ZHOU Zhen-Xiang, LI Zhi-Kang, DAI Qi-Xing, KONG Xiang-Sheng, WANG Zhi-Qin, GU Jun-Fei. Physiological Limitations and Possible Improve Approaches of Rice Photosynthesis[J]. , 2015, 21(4): 25-32.
[1] Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture[J]. J Exp Bot,2000, 51(supply 1): 475-485.[2] 赵黎明. 水稻光合作用研究进展及其影响因素分析[J]. 北方水稻,2014,44(5):66-71.[3] Fromme P, Melkozernov A, Jordan P, et al. Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems[J]. FEBS letters, 2003, 555(1): 40-44.[4] 王忠. 植物生理学:2版 [M]. 北京:中国农业出版社,2008:128-132.[5] Osborne B A, Raven J A. Light absorption by plants and its implications for photosynthesis[J]. Biol Rev, 1986, 61(1): 1-60.[6] Jung K H, Hur J, Ryu C H, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system[J]. PCP, 2003, 44(5): 463-472.[7] Nakanishi H, Nozue H, Suzuki K, et al. Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls[J]. PCP, 2005, 46(3): 467-473.[8] Zhang H, Li J, Yoo J H, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Mol Biol, 2006, 62(3): 325-337.[9] Huang X, Zhao H, Dong C, et al. Chlorophyll-deficit rice mutants and their research advances in biology[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(8): 1685-1691.[10] 周宾. 美国科研人员确定叶绿素调节的基因[J]. 世界农业,2005 (4):59.[11] Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield [J]. Annu Rev Plant Biol, 2010, 61: 235-261.[12] Hill R, Bendall F A Y. Function of the two cytochrome components in chloroplasts: a working hypothesis[J]. Nature, 1960, 186: 136-137.[13] 张秀芳,张彬彬,张兰. 叶绿体的电子传递和光合磷酸化[J].滨州师专学报,2002(4):8.[14] Genty B, Harbinson J. Regulation of light utilization for photosynthetic electron transport[J]. Photosynthesis & Environment. Springer Netherlands, 1996: 69-99.[15] Munekage Y, Hojo M, Meurer J, et al. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis[J]. Cell, 2002, 110(3): 361-371.[16] 陈晓亚,薛红卫. 植物生理与分子生物学:4版[M]. 北京:高等教育出版社,2012,249-266.[17] Nishikawa Y, Yamamoto H, Okegawa Y, et al. PGR5-dependent cyclic electron transport around PSI contributes to the redox homeostasis in chloroplasts rather than CO2 fixation and biomass production in rice[J]. PCP, 2012, 53(12): 2 117-2 126.[18] Nellaepalli S, Kodru S, Raghavendra A S, et al. Antimycin a sensitive pathway independent from PGR5 cyclic electron transfer triggers non-photochemical reduction of PQ pool and state transitions in arabidopsis thaliana[J]. J Photochem Photobiol B, 2015, 146: 24-33.[19] Heber U, Walker D. Concerning a dual function of coupled cyclic electron transport in leaves [J]. Plant Physiol, 1992, 100(4): 1 621-1 626.[20] Bendall D S, Manasse R S. Cyclic photophosphorylation and electron transport [J]. BBA-Bioenergettcs, 1995, 1229(1): 23-38.[21] 黄伟,张石宝,曹坤芳. 高等植物环式电子传递的生理作用[J]. 植物科学学报,2012,30(1):100-106.[22] 黄伟. 环式电子传递在植物抗环境胁迫过程中的重要作用[D]. 合肥:中国科学技术大学,2012.[23] Clarke J E, Johnson G N. In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley[J]. Planta, 2001, 212(5-6): 808-816.[24] Foyer C H, Neukermans J, Queval G, et al. Photosynthetic control of electron transport and the regulation of gene expression[J]. J Exp Botany, 2012, 63(4): 1 637-1 661.[25] 郭玉朋. 植物光呼吸途径研究进展[J]. 草业学报,2014,23(4):322-329.[26] 李朝霞,赵世杰,孟庆伟. 光呼吸途径及其功能[J]. 植物学通报,2003,20(2):190-197.[27] 叶威. 水稻淡黄绿叶色突变体光呼吸及其相关基因表达的研究[D]. 长沙:湖南师范大学,2014.[28] Somerville, C R. An early arabidopsis demonstration. Resolving a few issues concerning photorespiration[J]. Plant Physiol, 2001, 125(1): 20-24.[29] 李勇. 氮素营养对水稻光合作用与光合氮素利用率的影响机制研究[D]. 南京:南京农业大学,2011.[30] Whitney S M, Baldet P, Hudson G S, et al. Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts[J]. Plant J, 2001, 26(5): 535-547.[31] Parry M A J, Reynolds M, Salvucci M E, et al. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency[J]. J Exp Bot, 2010: 304.[32] Ku M S B, Cho D, Li X, et al. Introduction of genes encoding C4 photosynthesis enzymes into rice plants: physiological consequences[J]. Novartis Found Symp, 2001, 236: 100-111. [33] 张边江,陈全战,焦德茂. 构建C4水稻——一场新绿色革命的挑战[J]. 科技导报,2008,26(19):96-98.[34] Kebeish R, Niessen M, Thiruveedhi K, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana[J]. Nat Biotechnol, 2007, 25(5): 593-599.[35] Peterhansel C, Maurino V G. Photorespiration redesigned[J]. Plant Physiol, 2011, 155(1): 49-55.[36] Kebeish R, Niessen M, Thiruveedhi K. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana [J]. Nat Biotcchnol, 2007, 25: 593-599.[37] Griffiths H. Plant biology: designs on Rubisco[J]. Nature, 2006, 441(7096): 940-941.[38] 田秀英. RuBP 羧化酶/加氧酶的研究进展[J]. 重庆师专学报,2000,19(3):77-79.[39] 梅杨,李海蓝,谢晋,等. 核酮糖-1,5-二磷酸羧化酶/加氧酶 (Rubisco)[J]. 植物生理学通讯,2007,43(2):363-368.[40] Salvucci M E, Portis Jr A R, Ogren W L. A soluble chloroplast protein catalyzes ribulose bisphosphate carboxylase/oxygenase activation in vivo[J]. Photosynth Res, 1985, 7(2): 193-201.[41] Portis Jr A R, Kumar A, Li C. The rate of photosynthesis remains relatively high at moderately high temperatures in Arabidopsis thaliana rca mutant expressing thermostable chimeric Rubisco activase[J]. Photosynth Res, 2007, 91: 317-317.[42] Kurek I, Chang T K, Bertain S M, et al. Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress[J]. The Plant Cell Online, 2007, 19(10): 3230-3241.[43] 金松恒,翁晓燕,王妮妍,等. Rubisco 活化酶基因反义表达载体的构建与水稻的遗传转化[J]. 遗传,2005,26(6):881-886.[44] 李海霞,王真梅,曾汉来. 植物 Rubisco 活化酶的研究进展[J]. 植物生理学报,2010 (11):1092-1100.[45] 张国,王玮,邹琦. Rubisco 活化酶的分子生物学[J]. 植物生理学通讯,2004,40(5):633-637.[46] Morita K, Hatanaka T, Misoo S, et al. Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of Rubisco in rice[J]. Plant physiol, 2014, 164(1): 69-79.[47] Zarzycki J, Axen S D, Kinney J N, et al. Cyanobacterial-based approaches to improving photosynthesis in plants[J]. J Exp Bot, 2013, 64: 787-798.[48] McGrath J M, Long S P. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis[J]. Plant physiol, 2014, 164(4): 2247-2261.[49] Price G D, Pengelly J J L, Forster B, et al. The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species[J]. J Exp Bot, 2013, 64: 753-768.[50] Lin M T, Occhialini A, Andralojc P J, et al. A faster Rubisco with potential to increase photosynthesis in crops[J]. Nature, 2014, 513(7519): 547-550.[51] Ku M S B, Agarie S, Nomura M, et al. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants[J]. Nat Biotechnol, 1999, 17(1): 76-80.[52] Fukayama H, Tsuchida H, Agarie S, et al. Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice[J]. Plant Physiol, 2001, 127(3): 1136-1146.[53] Takeuchi Y, Akagi H, Kamasawa N, et al. Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme[J]. Planta, 2000, 211(2): 265-274.[54] 张边江,陈全战,焦德茂. 构建 C4 水稻 ——一场新绿色革命的挑战[J]. 科技导报,2008,26(19):96-98.[55] Kaldenhoff R. Mechanisms underlying CO2 diffusion in leaves[J]. Curr Opin Plant Biol, 2012, 15(3): 276-281.[56] Bota J, Medrano H, Flexas J. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress?[J]. New Phytol, 2004, 162(3): 671-681.[57] 孟雷,李磊鑫. 水分胁迫对水稻叶片气孔密度,大小及净光合速率的影响[J]. 沈阳农业大学学报,1999,30(5):477-480.[58] Qingsen Z, Jianchang Y, Weyers Z, et al. Effect of water deficit stress on the stomatal frequency, stomatal conductance and abscisic acid in rice leaves [J]. Acta Agronomica Sinica, 1995, 5: 3.[59] Takai T, Yano M, Yamamoto T. Canopy temperature on clear and cloudy days can be used to estimate varietal differences in stomatal conductance in rice[J]. Field Crops Res, 2010, 115(2): 165-170.[60] Homma K, Shiraiwa T. Evaluation of water stress in soybean [Glycine max] based on the difference in canopy temperature between soybean and rice [Oryza sativa] [J]. Jpn J Crop Sci, 2009, 78(3): 387-394.[61] Hackl H, Baresel J P, Mistele B, et al. A comparison of plant temperatures as measured by thermal imaging and infrared thermometry[J]. J Agron Crop Sci, 2012, 198(6): 415-429.[62] Evans J R, Kaldenhoff R, Genty B, et al. Resistances along the CO2 diffusion pathway inside leaves [J]. J Exp Bot, 2009, 60(8): 2 235- 2 248.[63] Flexas J, Diaz‐Espejo A, Galmes J, et al. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves[J]. Plant Cell Environ, 2007, 30(10): 1284-1298.[64] Harley P C, Loreto F, Di Marco G, et al. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2[J]. Plant Physiol, 1992, 98(4): 1429-1436.[65] Evans J R, Sharkey T D, Berry J A, et al. Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants[J]. Functi Plant Biol, 1986, 13(2): 281-292.[66] Terashima I, Hanba Y T, Tholen D, et al. Leaf functional anatomy in relation to photosynthesis[J]. Plant Physiol, 2011, 155(1): 108-116.[67] Scafaro A P, von Caemmerer S, Evans J R, et al. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness [J]. Plant Cell Environ, 2011, 34(11): 1 999-2 008. [68] Lauteri M, Haworth M, Serraj R, et al. Photosynthetic diffusional constraints affect yield in drought stressed rice cultivars during flowering[J]. PloS One, 2014, 9(10): e109054.[69] Adachi S, Nakae T, Uchida M, et al. The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis[J]. J Exp Bot, 2013, 64(4): 1 061-1 072.[70] Jones H G. Moderate-term water stresses and associated changes in some photosynthetic parameters in cotton[J]. New Phytol, 1973, 72(5): 1095-1105.[71] Bernacchi C J, Portis A R, Nakano H, et al. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo[J]. Plant Physiol, 2002, 130(4): 1992-1998.[72] Yamori W, Noguchi K, Hanba Y T, et al. Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures[J]. Plant Cell Physiol, 2006, 47(8): 1069-1080.[73] Galmés J, Medrano H, Flexas J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms[J]. New Phytol, 2007, 175(1): 81-93.[74] Warren C R. Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer[J]. J Exp Bot, 2008, 59(7): 1 475-1 487.[75] Galmés J, Medrano H, Flexas J. Acclimation of Rubisco specificity factor to drought in tobacco: discrepancies between in vitro and in vivo estimations[J]. J Exp Bot, 2006, 57(14): 3659-3667.[76] During H. Stomatal and mesophyll conductances control CO2 transfer to chloroplasts in leaves of grapevine (Vitis vinifera L.)[J]. Vitis, 2003, 42(2): 65-68.[77] Harley P C, Loreto F, Di Marco G, et al. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2[J]. Plant Physiol, 1992, 98(4): 1 429-1 436.[78] Brautigam A, Kajala K, Wullenweber J, et al. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species[J]. Plant Physiol, 2011, 155(1): 142-156.[79] Uehlein N, Sperling H, Heckwolf M, et al. The Arabidopsis aquaporin PIP1; 2 rules cellular CO2 uptake[J]. Plant Cell Environ, 2012, 35(6): 1077-1083.[80] Hanba Y T, Shibasaka M, Hayashi Y, et al. Overexpression of the barley aquaporin HvPIP2; 1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants[J]. Plant Cell Physiol, 2004, 45(5): 521-529.[81] Flexas J, Ribas‐Carbó M, Hanson D T, et al. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo[J]. Plant J, 2006, 48(3): 427-439.[82] Farquhar G D, von Caemmerer S, Bery J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149: 78-90[83] Sage R F. Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective[J]. Photosynth Res, 1994, 39(3): 351-368.[84] Hikosaka K, Murakami A, Hirose T. Balancing carboxylation and regeneration of ribulose-1,5-bisphosphate in leaf photosynthesis: temperature acclimation of an evergreen tree, Quercus myrsinaefolia[J]. Plant Cell Environ, 1999, 22(7): 841-849.[85] Von Caemmerer S, Farquhar G D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves[J]. Planta, 1981, 153(4): 376-387.[86] Evans J R, Terashima I. Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach[J]. Funct Plant Biol, 1987, 14(1): 59-68.[87] Sudo E, Makino A, Mae T. Differences between rice and wheat in ribulose‐1, 5‐bisphosphate regeneration capacity per unit of leaf‐N content[J]. Plant Cell Environ, 2003, 26(2): 255-263.[88] Willey D L, Fischer K, Wachter E, et al. Molecular cloning and structural analysis of the phosphate translocator from pea chloroplasts and its comparison to the spinach phosphate translocator[J]. Planta, 1991, 183(3): 451-461.[89] 夏叔芳.叶绿体代谢物运转与光合产物的调节[J]. 植物生理学通讯,1980(5):21.[90] 郑炳松,黄有军,王正加,等. 植物磷酸运转器的结构与功能研究进展[J]. 浙江林学院学报,2007,24(2):225-230.[91] Laisk A, Walker D A. Control of phosphate turnover as a rate-limiting factor and possible cause of oscillations in photosynthesis: a mathematical model[J]. P Roy Soc Lond B Bio, 1986, 227(1248): 281-302.[92] Riesmeier J W, Flügge U I, Schulz B, et al. Antisense repression of the chloroplast triose phosphate translocator affects carbon partitioning in transgenic potato plants[J]. Proc Natl Acad Sci USA, 1993, 90(13): 6 160-6 164.[93] 胡梦芸,张正斌,徐萍. 植物光合产物转运蛋白及其生物学功能[J]. 植物生理学通讯,2008,44(1):1-6.[94] Murchie E H, Pinto M, Horton P. Agriculture and the new challenges for photosynthesis research[J]. New Phytol, 2009, 181(3): 532-552.[95] von Caemmerer S, Quick W P, Furbank R T. The development of C4 rice: current progress and future challenges[J]. Science, 2012, 336(6089): 1 671-1 672. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 胡江博, 任正鹏, 丁翔, 王朝全, 冯阳, 王笑见, 张翔, 胥南飞. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19. |
[3] | 王云翔, 咸云宇, 赵灿, 王维领, 霍中洋. 缓控释氮肥施用技术在水稻上应用研究进展与展望[J]. 中国稻米, 2023, 29(4): 20-26. |
[4] | 李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44. |
[5] | 薛莲, 段圣省, 郑兴飞, 殷得所, 董华林, 胡建林, 王红波, 查中萍, 郭英, 曹鹏, 徐得泽. 湖北省水稻生产发展现状及对策建议[J]. 中国稻米, 2023, 29(4): 45-47. |
[6] | 王昕, 刘炜, 马洪文, 贺奇, 冯伟东, 张益民, 李虹, 殷延勃. 宁夏优质稻育种历程、问题及展望[J]. 中国稻米, 2023, 29(4): 48-52. |
[7] | 孙志广, 刘艳, 李景芳, 周振玲, 邢运高, 徐波, 周群, 王德荣, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻萌发耐淹性鉴定评价方法研究及种质资源筛选[J]. 中国稻米, 2023, 29(4): 53-58. |
[8] | 王兴为, 王志成. 秸秆还田与深施氮肥对水稻叶片生理特征、氮素利用及产量的影响[J]. 中国稻米, 2023, 29(4): 59-65. |
[9] | 赫兵, 李超, 严永峰, 刘月月, 赫靖淇, 于天华, 王帅, 陈殿元, 严光彬. 水稻秸秆秋季水耙浆还田对土壤及水稻性状的影响[J]. 中国稻米, 2023, 29(4): 66-71. |
[10] | 董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析[J]. 中国稻米, 2023, 29(4): 84-89. |
[11] | 吴涛, 邓宏中, 赵迎曦, 杨琛, 郭昱, 赵有权, 谢志梅, 张立阳, 杨远柱. 隆平高科水稻绿色通道2016—2021年审定品种分析[J]. 中国稻米, 2023, 29(4): 90-94. |
[12] | 邵泽毅, 谭旭生, 伍斌, 管恩相. 稻田小龙虾轮捕轮放寄养技术浅析[J]. 中国稻米, 2023, 29(4): 98-100. |
[13] | 黄日伟, 廖春良, 梁月宽, 杨绍意, 尚子帅, 姚云峰. 华浙优261在广西不同海拔作早中晚稻种植表现及高产栽培技术[J]. 中国稻米, 2023, 29(4): 106-107. |
[14] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
[15] | 严如玉, 甘国渝, 赵希梅, 殷大聪, 李燕丽, 金慧芳, 朱海, 李继福. 我国水稻优势产区生产格局及施肥现状研究[J]. 中国稻米, 2023, 29(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||