[1] 刘正辉. 粳稻种子垩白、植酸和蛋白质含量的基因型差异与粒位效应研究[D]. 杭州:浙江大学,2004: 9-13.[2] Kim S S, Lee S E, Kim O W, et al. Physicochemical characteristics of chalky kernels and their effects on sensory quality of cooked rice[J]. Cereal Chem, 2000, 77(3): 376-379.[3] Singh N, Sodhi N S, Kaur M, et al. Physico-chemical, morphological, thermal, cooking and textural properties of chalky and translucent rice kernels[J]. Food Chem, 2003, 82: 433-439.[4] Chun A, Song J, Kim K J, et al. Quality of head and chalky rice and deterioration of eating quality by chalky rice[J]. J Crop Sci Biotech, 2009, 12(4) : 239-244.[5] Zhou S R, Yin L L, Xue H W. Functional genomics based understanding of rice endosperm development[J]. Curr Opin Plant Biol, 2013, 16: 236-246.[6] Yang X Y, Lin Z M, Liu Z H, et al. Physicochemical and sensory properties of japonica rice varied with production areas in China[J]. J Integr Agr, 2014, online.[7] 周立军,江玲,翟虎渠,等. 水稻垩白的研究现状与改良策略[J]. 遗传,2009(31):563-572.[8] 刘艳春,邵高能,胡培松. 水稻垩白性状研究进展[J]. 中国稻米,2012,18(3):1-8.[9] 陈红. 水稻苗期黄绿叶基因YGL2的功能研究和垩白粒率QTL qPGWC-7候选基因的功能初步分析[D]. 南京:南京农业大学,2013:70-73.[10] Zhou L J, Chen L M, Jiang L, et al. Fine mapping of the grain chalkiness QTL qPGWC-7 in rice(Oryza sativa L.) [J]. Theor Appl Genet, 2009, 118:581–590.[11] Guo T, Liu X L, Wan X Y, et al. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice(Oryza sativa) [J]. J Integr Plant Biol, 2011,53(8): 598-607.[12] Li Y B, Fan C C, Xing Y Z, et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nat Genet, 2014, 46: 398-404.[13] 李国生,张耗,王志琴,等. 氮素水平对水稻产量与品质的影响[J]. 扬州大学学报:农业与生命科学版,2007(28):66-70.[14] 万靓军,霍中洋,龚振恺,等. 氮肥运筹对杂交稻主要品质性状及淀粉RVA 谱特征的影响[J]. 作物学报,2006,32(10):1 491 - 1 497.[15] 张亚洁,陈莹莹,闫国军,等. 不同种植方式下氮素营养对陆稻中旱3号和水稻扬粳9538米质的影响[J]. 作物学报,2009,35(11):1 866-1 874.[16] 赵全志,殷春渊,宁慧峰,等. 氮素调控对水稻籽粒相对充实度的影响及籽粒相对充实度与产量形成和品质的关系[J]. 河南农业大学学报,2007,41(1):128-133. [17] Qiao J F, Liu Z H , Deng S Y, et al. Occurrence of perfect and imperfect grains of six japonica rice cultivars as affected by nitrogen fertilization[J]. Plant Soil, 2011, 349: 191-202.[18] Lin S K, Chang M C, Tsai Y G, et al. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression[J]. Proteomics, 2005, 5: 2 140-2 156.[19] Yamakawa H, Hirose T, Kuroda M, et al. Comprehensive expression profiling of rice grain-filling related genes under high temperature using DNA microarray[J]. Plant Physiol, 2007, 144: 258-277.[20] Duan M J, Sun S S M. Profiling the expression of genes controlling rice grain quality[J]. Plant Mol Biol, 2005, 59: 165-178.[21] Xi M, Lin Z M, Zhang X C, et al. Endosperm structure of white-belly and white-core rice grains shown by scanning electron microscopy[J]. Plant Prod Sci, 2014, 17(4): 285-290.[22] Wang E T, Wang J J, Zhu X D, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nat Genet, 2008, 40: 1 370-1 374.[23] Koh H J, Son Y H, Heu M H, et al. Molecular mapping of a new genic male-sterility gene causing chalky endosperm in rice(Oryza sativa L.) [J]. Euphytica, 1999, 106: 57-62.[24] Kang H G, Park S, Matsuoka M, et al. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene(OsPPDKB) [J]. Plant J, 2005, 42: 901-911.[25] Zhang D P, Wu J G, Zhang Y J, et al. Phenotypic and candidate gene analysis of a new floury endosperm mutant(osagpl2-3) in rice[J]. Plant Mol Biol Rep. 2012, 30: 1 303-1 312.[26] She K C,Kusano H,Koizumi K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. Plant Cell, 2010, 22(10): 3 280-3 294.[27] Mikami I, Aikawa M, Hirano H Y, et al. Altered tissue-specific expression at the Wx gene of the opaque mutants in rice[J]. Euphytica, 1999, 105(2): 91-97.[28] Fujita N, Yoshida M, Kondo T, et al. Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm[J]. Plant Physiol, 2007, 144: 2009-2023.[29] Tanaka N, Fujita N, Nishi A, et al. The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm[J]. Plant Biotechn J, 2004, 2: 507-516.[30] Fu F F, Xue H W. Co-expression analysis identifies Rice Starch Regulator1(RSR1), a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator[J]. Plant Physiol, 2010, 154: 927-938.[31] Wang J C, Xu H, Zhu Y, et al. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. J Exp Bot, 2013, 64(11): 3 453-3 466.[32] Wang Y H, Ren Y L, Liu X, et al. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells[J]. Plant J, 2010, 64: 812-824.[33] Zhang X Q, Hou P, Zhu H T, et al. Knockout of the VPS22 component of the ESCRT-II complex in rice(Oryza sativa L.) causes chalky endosperm and early seedling lethality[J]. Mol Biol Rep, 2013, 40: 3 475-3 481.[34] Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nat Genet, 2007, 39(5): 623-630.[35] Han X H, Wang Y H, Liu X, et al. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice[J]. J Exp Bot, 2012, 63: 121-130.[36] Kim Y J, Yeu S Y, Park B S, et al. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice[J]. Plos One, 2012, 7(9): e44493.[37] Wakasa Y, Yasuda H, Oono Y, et al. Expression of ER quality control-related genes in response to changes in BiP1 levels in developing rice endosperm[J]. Plant J, 2011,65: 675-689.[38] Yasuda H, Hirose S, Kawakatsu T, et al. Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice[J]. Plant Cell Physiol, 2009, 50(8): 1 532- 1 543.[39] Wakasa Y, Yasuda H, Takaiwa F. Secretory type of recombinant thioredoxin h induces ER stress in endosperm cells of transgenic rice[J]. J Plant Physiol, 2013, 170: 202-210.[40] Oono Y, Wakasa Y, Hirose S, et al. Analysis of ER stress in developing rice endosperm accumulating β-amyloid peptide[J]. Plant Biotechnol J, 2010, 8: 691-718.[41] Liu X L, Guo T, Wan XY, et al. Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice[J]. BMC Genomics, 2010, 11: 30.[42] Li H X, Chen Z, Hu M X, et al. Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling[J]. Plant Cell Rep, 2011, 30: 1 641-1 659.[43] Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation[J]. Plant Cell Physiol, 2010, 51(5): 795-809.[44] Ishimaru T, Horigane A K, Ida M, et al. Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress[J]. J Cereal Sci, 2009, 50: 166-174.[45] Patindol J, Wang Y J. Fine structures and physicochemical properties of starches from chalky and translucent rice kernels[J]. J Agr Food Chem, 2003, 51: 2 777-2 784.[46] Ryoo N, Yu C, Park C S, et al. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice(Oryza sativa L.) [J]. Plant Cell Rep, 2007, 26: 1 083-1 095.[47] Tsukaguchi T, Iida Y. Effect of assimilate supply and high temperature during grain-filling period on the occurrence of various types of chalky kernels in rice plants(Oryza sativa L.) [J]. Plant Prod Sci, 2008, 11: 203-210.[48] Zhang H, Tan G, Wang Z, et al. Ethylene and ACC levels in developing grains are related to the poor appearance and milling quality of rice[J]. Plant Growth Regul, 2009, 58: 85-96.[49] Ebata M. Studies on white-core rice kernel. IV. Effects of night temperature in ripening time upon the occurrence and types of white-core kernels[J]. Jpn J Crop Sci, 1960, 29: 409-411.[50] Hoshikawa K. Anatomical and developmental studies of the rice endosperm tissue[J]. Bio Sci, 1972, 22: 66-76.[51] 肖景华,吴昌银,韩斌,等. 中国水稻功能基因组研究进展[J]. 中国科学:C辑,2009,39(10):909-924.[52] 金田蕴,李辉,郭涛,等. 水稻稳定高垩白率突变体的获得与理化特性分析[J]. 作物学报,2010,36(1):121-132.[53] Lin Z M, Zhang X C, Yang X Y, et al. Proteomic analysis of proteins related to rice grain chalkiness using iTRAQ and a novel comparison system based on a notched-belly mutant with white-belly[J]. BMC Plant Biol, 2014, 14:163[54] Britto, D T, Kronzucker H J. Bioengineering nitrogen acquisition in rice: can novel initiatives in rice genomics and physiology contribute to global food security? [J]. Bio Essays, 2004, 26: 683-692.[55] Buchanan B, Gruissem W J, Russell L. Biochemistry & Molecular Biology of Plants[M]. American Society of Plant Physiologists, Rockville, MD, USA, 2002: 358-361.[56] Foyer C H, Noctor G. Photosynthetic nitrogen assimilation: inter-pathway control and signaling[M]. In: Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, Foyer C H, Noctor G.(Eds). New York, Kluwer Academic Publishers, 2004: 1-22.[57] Lawlor, D W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems[J]. J Exp Bot, 2002, 53: 773-787.[58] Reddy P S, Sreenivasulu N. Different omics approaches in cereals and their possible implications for developing a system biology approach to study the mechanism of abiotic stress tolerance[M]. In: Gupta P K, Varshney R K(eds.), Cereal Genomics II, Springer Science+Business Media, Dordrecht, 2013: 177-199.[59] Phan T T T, Ishibashi Y, Miyazaki M, et al. High temperature-induced repression of the rice sucrose transporter(OsSUT1) and starch synthesis-related genes in sink and source organs at milky ripening stage causes chalky grains[J]. J Agro Crop Sci, 2013, 199: 178-188.[60] Hakata M, Kuroda M, Miyashita T, et al. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature[J]. Plant Biotechn J, 2012, 10: 1 110-1 117. |