中国稻米 ›› 2015, Vol. 21 ›› Issue (1): 12-17.DOI: 10.3969/j.issn.1006-8082.2015.01.003
出版日期:
2015-01-20
发布日期:
2015-01-20
通讯作者:
金千瑜
基金资助:
国家自然科学基金项目(30900880, 31270035);浙江省自然科学基金项目(LY13C130006);浙江省公益项目(2010C32G3010019);浙江省水稻种业科技创新团队项目(2012R10024-17)
Online:
2015-01-20
Published:
2015-01-20
摘要: 氧气在水稻生长发育过程中起着重要的作用,水稻的需水需氧特异性矛盾容易造成根际氧气供应不足、根系呼吸减弱、矿质营养吸收降低,进而引起水稻碳氮代谢紊乱,不利于其生长发育及产量形成。因此,深入研究水稻根际氧生理及根际氧环境改善方案,对于水稻耐涝高产以及提高氮素利用均具有重要意义。本文综述了根际氧气供应对水稻生长、氮素吸收及同化和相关氨基酸代谢、氮肥利用率等的影响研究,并对今后的研究进行了展望。
中图分类号:
胡志华, 朱练峰, 林育炯, 胡继杰, 张均华, 金千瑜*. 水稻氮代谢对根际氧气供应的响应研究[J]. 中国稻米, 2015, 21(1): 12-17.
HU Zhi-Hua, ZHU Lian-Feng, LIN Yu-Jiong, HU Ji-Jie, ZHANG Jun-Hua, JIN Qian-Yu-*. Research on Rice Nitrogen Metabolism Response to Oxygen Content in Rhizosphere[J]. , 2015, 21(1): 12-17.
[1] 陈永华,严钦泉,肖国樱. 水稻耐淹涝的研究进展[J].中国农学通报,2006,21(12):151-153.[2] 梅少华,梅金先,陈兴国,等. 洪涝灾害对水稻生产的影响评估及抗灾对策研究[J].作物杂志,2011 (2):89-93.[3] Wiengweera A, Greenway H, Thomson C J. The use of agar nutrient solution to simulate lack of convection in waterlogged soils[J]. Ann Bot, 1997, 80(2): 115-123.[4] Zeiger L T E. Plant Physiology[M]. Fourth Editon. 北京: 科学出版社, 2009.[5] 吴良欢,祝增荣,梁永超,等. 水稻覆膜旱作节水节肥高产栽培技术[J]. 浙江农业大学学报,1999,25(1):41-42.[6] Armstrong W.Aeration in higher plants[J]. Advances in Botanical research, 1979,7: 225-332.[7] Gibbs J, Greenway H.Review: mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism[J]. Funct Plant Biol, 2003, 30(3): 353-353.[8] Erdmann B, Wiedenroth E. Changes in the root system of wheat seedlings following root anaerobiosis: III. Oxygen concentration in the roots[J]. Ann Bot, 1988, 62(3): 277-286.[9] Good A G, Paetkau D H. Identification and characterization of a hypoxically induced maize lactate dehydrogenase gene[J]. Plant mol biol, 1992, 19(4): 693-697.[10] Ponnamperuma F. The chemistry of submerged soils[M]. NY and London: Academic Press, 1972.[11] 李玉昌,李阳生,李绍清. 淹涝胁迫对水稻生长发育危害与耐淹性机理研究的进展[J]. 中国水稻科学,1998,12(S1):70-76.[12] G S M.Agriculture Encyclopedia: Root Formation[M]. Japan: Yangxian Hall, 1987.[13] 朱练峰. 根际氧供应对水稻根系生长的影响及其与产量形成的关系[D]. 北京:中国农业科学院,2013.[14] 刘法谋. 根际氧水平对不同类型水稻形态与生理特性的影响[D]. 北京:中国农业科学院,2011.[15] 王丹英,韩勃,章秀福,等. 水稻根际含氧量对根系生长的影响[J]. 作物学报,2008,34(5):803-808.[16] 徐春梅,王丹英,陈松,等. 增氧对水稻根系生长与氮代谢的影响[J]. 中国水稻科学,2012,26(3):320-324.[17] Almeida A, Vriezen W, Van Der Straeten D.Molecular and physiological mechanisms of flooding avoidance and tolerance in rice[J]. Russ J Plant Physiol, 2003, 50(6): 743-751.[18] 朱练峰,刘学,禹盛苗,等. 增氧灌溉对水稻生理特性和后期衰老的影响[J]. 中国水稻科学,2010,24(3):257-263.[19] 赵锋,徐春梅,张卫建,等. 根际溶氧量与氮素形态对水稻根系特征及氮素积累的影响[J]. 中国水稻科学,2011,25(2):195-200.[20] 赵锋,张卫建,章秀福,等. 连续增氧对不同基因型水稻分蘖期生长和氮代谢酶活性的影响[J]. 作物学报,2012,38(2):344-351.[21] 张亚丽,董园园,沈其荣,等. 不同水稻品种对铵态氮和硝态氮吸收特性的研究[J].土壤学报,2005,41(6):918-923.[22] 汪晓丽,司江英,陈冬梅,等. 低 pH 条件下不同氮源对水稻根通气组织形成的影响[J]. 扬州大学学报:农业与生命科学版,2005,26(2):66-70.[23] Oliveira H C, Sodek L. Effect of oxygen deficiency on nitrogen assimilation and amino acid metabolism of soybean root segments[J]. Amino acids, 2013, 44(2): 743-755.[24] Oliveira H C, Freschi L, Sodek L. Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency[J]. Plant Physiol Biochem, 2013, 66: 141-149.[25] Morard P, Silvestre J, Lacoste L, et al. Nitrate uptake and nitrite release by tomato roots in response to anoxia[J]. J plant physiol, 2004, 161(7): 855-865.[26] Kronzucker H J, Kirk G J, Siddiqi M Y, et al. Effects of hypoxia on 13NH4+ fluxes in rice roots kinetics and compartmental analysis[J]. Plant Physiology, 1998, 116(2): 581-587.[27] Suenaga A, Moriya K, Sonoda Y, et al. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants[J]. Plant and Cell Physiology, 2003, 44(2): 206-211.[28] Sonoda Y, Ikeda A, Saiki S, et al. Distinct expression and function of three ammonium transporter genes (OsAMT1; 1–1; 3) in rice[J]. Plant Cell Physiol, 2003, 44(7): 726-734.[29] Crawford N M, Forde B G. Molecular and developmental biology of inorganic nitrogen nutrition[J]. The Arabidopsis book/American Society of Plant Biologists, 2002.[30] Liu K H, Tsay Y F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation[J]. EMBO j, 2003, 22(5): 1005-1013.[31] Wang X, Wu P, Hu B, et al. Effects of nitrate on the growth of lateral root and nitrogen absorption in rice[J]. Acta Botanica Sinica, 2001, 44(6): 678-683.[32] Kirk G J. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil[J]. New Phytol, 2003, 159(1): 185-194.[33] Stoimenova M, Igamberdiev A U, Gupta K J, et al. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria[J]. Planta, 2007, 226(2): 465-474.[34] Kronzucker H J, Siddiqi M Y, Glass A D, et al. Nitrate-ammonium synergism in rice. A subcellular flux analysis[J]. Plant Physiol, 1999, 119(3): 1041-1046.[35] 赵霞,徐春梅,王丹英,等. 持续低氧环境下铵硝混合营养对水稻苗期生长及氮素代谢的影响[J]. 中国稻米,2013,19(5):13-17.[36] Little D Y, Rao H, Oliva S, et al. The putative high-affinity nitrate transporter NRT2. 1 represses lateral root initiation in response to nutritional cues[J]. Proc Natl Acad Sci U S A, 2005, 102(38): 13693-13698.[37] Segonzac C, Boyer J C, Ipotesi E, et al. Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter[J]. The Plant Cell Online, 2007, 19(11): 3760-3777.[38] 武维华. 植物生理学[M]. 2版. 北京:科学出版社,2008.[39] Warner R L, Kleinhofs A. Genetics and molecular biology of nitrate metabolism in higher plants[J]. Physiol Plant, 1992, 85(2): 245-252.[40] Sivasankar S, Oaks A. Nitrate assimilation in higher plants: the effect of metabolites and light[J]. Plant Physiol Biochem, 1996, 34(5): 609-620.[41] Kaiser W, Weiner H, Huber S. Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity[J]. Physiol Plant, 1999, 105(2): 384-389.[42] Licausi F. Regulation of the molecular response to oxygen limitations in plants[J]. New Phytol, 2011, 190(3): 550-555.[43] Thomas A L, Sodek L. Development of the nodulated soybean plant after flooding of the root system with different sources of nitrogen[J]. Braz J Plant Physiol, 2005, 17(3): 291-297.[44] Horchani F, Aschi-Smiti S, Brouquisse R. Involvement of nitrate reduction in the tolerance of tomato (Solanum lycopersicum L.) plants to prolonged root hypoxia[J]. Acta physiol plant, 2010, 32(6): 1113-1123.[45] Botrel A, Kaiser W M. Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status[J]. Planta, 1997, 201(4): 496-501.[46] Cock J M, Brock I W, Watson A T, et al. Regulation of glutamine synthetase genes in leaves of Phaseolus vulgaris[J]. Plant mol biol, 1991, 17(4): 761-771.[47] Shi K, Ding X T, Dong D K, et al. Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus: a role for increased nitrate reduction[J]. Funct Plant Biol, 2008, 35(4): 337-345.[48] Lam H M, Coschigano K, Oliveira I, et al. The molecular-genetics of nitrogen assimilation into amino acids in higher plants[J]. Annu rev plant biol, 1996, 47(1): 569-593.[49] 蒋明义,郭绍川. 氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用[J]. 植物生理学报,1997,23(4):347-352.[50] Shingaki-Wells R N, Huang S, Taylor N L, et al. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance[J]. Plant Physiol, 2011, 156(4): 1706-1724.[51] Reggiani R, Bertani A. Anaerobic amino acid metabolism[J]. Russ J Plant Physiol, 2003, 50(6): 733-736.[52] Mustropha A, Zanettia M E, Janga C J, et al. Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis[J]. PNAs, 2009, 106(44): 18843-18848.[53] Hunt P, Klok E, Trevaskis B, et al. Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana[J]. Proc Natl Acad Sci, 2002, 99(26): 17197-17202.[54] Yang C Y, Hsu F C, Li J P, et al. The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis[J]. Plant Physiol, 2011, 156(1): 202-212.[55] Cousins A B, Pracharoenwattana I, Zhou W, et al. Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release[J]. Plant Physiol, 2008, 148(2): 786-795.[56] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture[J]. Ann Bot, 2010, 105(7): 1141-1157.[57] 彭少兵,黄见良,钟旭华,等. 提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学,2002,35(9):1095-1103.[58] Zhu Z, Chen D. Nitrogen fertilizer use in China–Contributions to food production, impacts on the environment and best management strategies[J]. Nutr Cycl Agroecosys, 2002, 63(2-3): 117-127.[59] De Datta S. Advances in soil fertility research and nitrogen fertilizer management for lowland rice[J]. Efficiency of nitrogen fertilizers for rice, 1987: 27-41.[60] 蔡贵信,朱兆良,朱宗武,等. 水稻田中碳铵和尿素的氮素损失的研究[J]. 土壤,1985,17(5):225-229.[61] Simpson J, Freney J. Interacting processes in gaseous nitrogen loss from urea applied to flooded rice fields[C]// Interacting processes in gaseous nitrogen loss from urea applied to flooded rice fields.Conference papers, Urea Technology and Utilization International Symposium Malaysian Society of Soil Science, Kuala Lumpur: 281-290.[62] 张树兰,杨学云. 温度、水分及不同氮源对土壤硝化作用的影响[J]. 生态学报,2002,22(12):2147-2153.[63] 倪吾钟,沈仁芳. 不同氧化还原电位条件下稻田土壤中15N 标记硝态氮的反硝作用[J]. 中国环境科学,2000,20(6):519-523.[64] 孙志高,刘景双. 湿地土壤的硝化-反硝化作用及影响因素[J]. 土壤通报,2008,39(6):1462-1467.[65] Reddy K, Patrick J W. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil[J]. Soil Biol Biochem, 1975, 7(2): 87-94.[66] Patrick W H, Wyatt R. Soil nitrogen loss as a result of alternate submergence and drying[J]. Soil Sci Soc Am J, 1964, 28(5): 647-653.[67] Tan X, Shao D, Liu H, et al. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields[J]. Paddy and Water Environment, 2013, 11(1-4): 381-395.[68] 赵霞,徐春梅,王丹英,等. 根际溶氧量在水稻氮素利用中的作用机制研究[J]. 中国水稻科学,2013,27(6):647-652.[69] Trought M, Drew M. Alleviation of injury to young wheat plants in anaerobic solution cultures in relation to the supply of nitrate and other inorganic nutrients[J]. J Exp Bot, 1981, 32(3): 509-522.[70] Wang X Z, Zhu J G, Gao R, et al. Nitrogen cycling and losses under rice-wheat rotations with coated urea and urea in the Taihu lake region[J]. Pedosphere, 2007, 17(1): 62-69.[71] Li Y, Wang X. Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions[J]. Plant soil, 2013, 365(1-2): 115-126.[72] Sepaskhah A, Barzegar M. Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment[J]. Agricultural Water Management, 2010, 98(1): 38-44.[73] Ye Y, Liang X, Chen Y, et al. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use[J]. Field Crops Research, 2013, 144: 212-224.[74] 刘学,朱练峰,陈琛,等. 超微气泡增氧灌溉对水稻生育特性及产量的影响[J]. 灌溉排水学报,2009,28(5):89-91.[75] Baker A M, Hatton W. Calcium peroxide as a seed coating material for padi rice[J]. Plant soil, 1987, 99(2-3): 379-386. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 胡江博, 任正鹏, 丁翔, 王朝全, 冯阳, 王笑见, 张翔, 胥南飞. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19. |
[3] | 王云翔, 咸云宇, 赵灿, 王维领, 霍中洋. 缓控释氮肥施用技术在水稻上应用研究进展与展望[J]. 中国稻米, 2023, 29(4): 20-26. |
[4] | 李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44. |
[5] | 薛莲, 段圣省, 郑兴飞, 殷得所, 董华林, 胡建林, 王红波, 查中萍, 郭英, 曹鹏, 徐得泽. 湖北省水稻生产发展现状及对策建议[J]. 中国稻米, 2023, 29(4): 45-47. |
[6] | 王昕, 刘炜, 马洪文, 贺奇, 冯伟东, 张益民, 李虹, 殷延勃. 宁夏优质稻育种历程、问题及展望[J]. 中国稻米, 2023, 29(4): 48-52. |
[7] | 孙志广, 刘艳, 李景芳, 周振玲, 邢运高, 徐波, 周群, 王德荣, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻萌发耐淹性鉴定评价方法研究及种质资源筛选[J]. 中国稻米, 2023, 29(4): 53-58. |
[8] | 王兴为, 王志成. 秸秆还田与深施氮肥对水稻叶片生理特征、氮素利用及产量的影响[J]. 中国稻米, 2023, 29(4): 59-65. |
[9] | 赫兵, 李超, 严永峰, 刘月月, 赫靖淇, 于天华, 王帅, 陈殿元, 严光彬. 水稻秸秆秋季水耙浆还田对土壤及水稻性状的影响[J]. 中国稻米, 2023, 29(4): 66-71. |
[10] | 董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析[J]. 中国稻米, 2023, 29(4): 84-89. |
[11] | 吴涛, 邓宏中, 赵迎曦, 杨琛, 郭昱, 赵有权, 谢志梅, 张立阳, 杨远柱. 隆平高科水稻绿色通道2016—2021年审定品种分析[J]. 中国稻米, 2023, 29(4): 90-94. |
[12] | 邵泽毅, 谭旭生, 伍斌, 管恩相. 稻田小龙虾轮捕轮放寄养技术浅析[J]. 中国稻米, 2023, 29(4): 98-100. |
[13] | 黄日伟, 廖春良, 梁月宽, 杨绍意, 尚子帅, 姚云峰. 华浙优261在广西不同海拔作早中晚稻种植表现及高产栽培技术[J]. 中国稻米, 2023, 29(4): 106-107. |
[14] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
[15] | 严如玉, 甘国渝, 赵希梅, 殷大聪, 李燕丽, 金慧芳, 朱海, 李继福. 我国水稻优势产区生产格局及施肥现状研究[J]. 中国稻米, 2023, 29(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||